Structural Integrity in the Petrochemical Industry

Author(s):  
I. Le May
Author(s):  
Jorge A. Penso ◽  
Patrick Belanger

There are several failure mechanisms that might affect ferritic-austenitic dissimilar metal welds (DMWs) in petrochemical plants and refineries. Examples are cracking due to creep, stress corrosion cracking (SCC), sulphide SSC, thermal fatigue, brittle fracture, pitting corrosion, and hydrogen embrittlement. Of these, creep, SCC, and hydrogen embrittlement are perhaps of greater interest. Industry has many lessons learned; however, still experiences high consequence failures. This work describes the most common failure mechanisms in dissimilar ferritic-austenitic welds and summarizes a guidance to prepare welding procedures and reduce the likelihood of failures. This guidance is based on a literature review and industry experience. The metallurgical characteristics of the damage observed in both service and laboratory test samples indicate that creep rupture is the dominant failure mode for Dissimilar Metal Welds (DMW) in some high temperature service conditions. However, it has also been observed that temperature cycling contributes significantly to damage and can cause failure even when primary stress levels are relatively low. Therefore, a creep-fatigue assessment procedure is required as part of a remaining life calculation. API 579-1/ASME FFS-1 2007 Fitness-For-Service standard includes a compendium of consensus methods for reliable assessment of the structural integrity of equipment containing identified flaws or damage. Part 10 of API 579-1 includes a method for protection against failure from creep-fatigue. In the assessment of DMW, a creep-fatigue interaction equation is provided to evaluate damage caused by thermal mismatch, sustained primary stresses, and cyclic secondary loads [Ref.1]. Failures due to hydrogen embrittlement cracking (HEC) mechanisms are not uncommon and are also described in this paper [Ref. 2]. Finally, a case history of a DMW failure in a steam methane furnace, which is common in the petrochemical industry, is described and shown as an example of a failure mitigation approach.


Author(s):  
M. Isaacson ◽  
M.L. Collins ◽  
M. Listvan

Over the past five years it has become evident that radiation damage provides the fundamental limit to the study of blomolecular structure by electron microscopy. In some special cases structural determinations at very low doses can be achieved through superposition techniques to study periodic (Unwin & Henderson, 1975) and nonperiodic (Saxton & Frank, 1977) specimens. In addition, protection methods such as glucose embedding (Unwin & Henderson, 1975) and maintenance of specimen hydration at low temperatures (Taylor & Glaeser, 1976) have also shown promise. Despite these successes, the basic nature of radiation damage in the electron microscope is far from clear. In general we cannot predict exactly how different structures will behave during electron Irradiation at high dose rates. Moreover, with the rapid rise of analytical electron microscopy over the last few years, nvicroscopists are becoming concerned with questions of compositional as well as structural integrity. It is important to measure changes in elemental composition arising from atom migration in or loss from the specimen as a result of electron bombardment.


Author(s):  
Henry H. Eichelberger ◽  
John G. Baust ◽  
Robert G. Van Buskirk

For research in cell differentiation and in vitro toxicology it is essential to provide a natural state of cell structure as a benchmark for interpreting results. Hypothermosol (Cryomedical Sciences, Rockville, MD) has proven useful in insuring the viability of synthetic human epidermis during cold-storage and in maintaining the epidermis’ ability to continue to differentiate following warming.Human epidermal equivalent, EpiDerm (MatTek Corporation, Ashland, MA) consisting of fully differentiated stratified human epidermal cells were grown on a microporous membrane. EpiDerm samples were fixed before and after cold-storage (4°C) for 5 days in Hypothermosol or skin culture media (MatTek Corporation) and allowed to recover for 7 days at 37°C. EpiDerm samples were fixed 1 hour in 2.5% glutaraldehyde in sodium cacodylate buffer (pH 7.2). A secondary fixation with 0.2% ruthenium tetroxide (Polysciences, Inc., Warrington, PA) in sodium cacodylate was carried out for 3 hours at 4°C. Other samples were similarly fixed, but with 1% Osmium tetroxide in place of ruthenium tetroxide. Samples were dehydrated through a graded acetone series, infiltrated with Spurrs resin (Polysciences Inc.) and polymerized at 70°C.


Author(s):  
Werner Kühlbrandt ◽  
Da Neng Wang ◽  
K.H. Downing

The light-harvesting chlorophyll-a/b protein complex (LHC-II) is the most abundant membrane protein in the chloroplasts of green plants where it functions as a molecular antenna of solar energy for photosynthesis. We have grown two-dimensional (2d) crystals of the purified, detergent-solubilized LHC-II . The crystals which measured 5 to 10 μm in diameter were stabilized for electron microscopy by washing with a 0.5% solution of tannin. Electron diffraction patterns of untilted 2d crystals cooled to 130 K showed sharp spots to 3.1 Å resolution. Spot-scan images of 2d crystals were recorded at 160 K with the Berkeley microscope . Images of untilted crystals were processed, using the unbending procedure by Henderson et al . A projection map of the complex at 3.7Å resolution was generated from electron diffraction amplitudes and high-resolution phases obtained by image processing .A difference Fourier analysis with the same image phases and electron diffraction amplitudes recorded of frozen, hydrated specimens showed no significant differences in the 3.7Å projection map. Our tannin treatment therefore does not affect the structural integrity of the complex.


2003 ◽  
Author(s):  
Catherine M. Burns ◽  
Lisa Garrison ◽  
Nick Dinadis

Synlett ◽  
2020 ◽  
Author(s):  
Shi-Liang Shi ◽  
Yuan Cai

AbstractAsymmetric hydroboration of simple and unactivated terminal alkenes (α-olefins), feedstock chemicals derived from the petrochemical industry, has not been efficiently realized for past decades. Using a bulky ANIPE ligand, we achieved a rare example of highly enantioselective copper-catalyzed Markovnikov hydroboration of α-olefins. The chiral secondary alkylboronic ester products were obtained in moderate to good yields and regioselectivities with excellent enantioselectivities.1 Introduction2 Conditions Optimization3 Substrate Scope4 Application5 Mechanistic Discussion6 Conclusions and Future Directions


Sign in / Sign up

Export Citation Format

Share Document