Combining Stem Cells and Materials for Nerve Tissue Regeneration

Author(s):  
James B. Phillips ◽  
John D. Sinden
Author(s):  
Chukwuweike Gwam ◽  
Ahmed Emara ◽  
Nequesha Mohamed ◽  
Noor Chughtai ◽  
Johannes Plate ◽  
...  

Muscle and nerve tissue damage can elicit a significant loss of function and poses as a burden for patients and healthcare providers. Even for tissues, such as the peripheral nerve and skeletal muscle, that harbor significant regenerative capacity, innate regenerative processes often lead to less than optimal recovery and residual loss of function. The reasons for poor regeneration include significant cell damage secondary to oxidative stress, poor recruitment of resident stem cells, and an unfavorable microenvironment for tissue regeneration. Stem cell-based therapy was once thought as a potential therapy in tissue regeneration, due to its self-renewal and multipotent capabilities. Early advocates for cellular-based therapy pointed to the pluripotent nature of stem cells, thus eluding to its ability to differentiate into resident cells as the source of its regenerative capability. However, increasing evidence has revealed a lack of engraftment and differentiation of stem cells, thereby pointing to stem cell paracrine activity as being responsible for its regenerative potential. Stem cell-conditioned media houses biomolecular factors that portray significant regenerative potential. Amniotic-derived stem cell-conditioned media (AFS-CM) has been of particular interest because of its ease of allocation and in vitro culture. The purpose of this review is to report the results of studies that assess the role of AFS-CM for nerve and muscle conditions. In this review, we will cover the effects of AFS-CM on cellular pathways, genes, and protein expression for different nerve and muscle cell types.


2018 ◽  
Vol 2018 ◽  
pp. 1-2 ◽  
Author(s):  
Huaqiong Li ◽  
Adam Qingsong Ye ◽  
Ming Su

2019 ◽  
Vol 52 (3) ◽  
pp. e12572 ◽  
Author(s):  
Dianri Wang ◽  
Yuhao Wang ◽  
Weidong Tian ◽  
Jian Pan

2017 ◽  
Author(s):  
Olga N. Oztel ◽  
Adil Allahverdiyev ◽  
Aysegul Batioglu Karaaltin ◽  
Melahat Bağırova ◽  
Ercument Ovali

AbstractBackgroundExperimental studies performed with human olfactory nerve stem cells haveshown that these cells can ameliorate nerve cell regeneration. Developing a method of repairing nerve damage solely using stem cells without the need of any supporting material is important.MethodsA multilayer cell mass was obtained from olfactory tissue-derived mesenchymal stem cells with high viability and proliferation capability using a protocol devoid of scaffolds or any other artificial supporting material. First, human olfactory tissue-derived mesenchymal stem cells were isolated, cultured, and characterized. Next, consecutive passages were conducted to obtain multilayer cell growth. The resulting cell mass could be suitable for tissue engineering models as well as nerve cell or tissue regeneration studies in the future.ResultsViability and adhesive properties of the resulting cell mass were examined and found to be suitable for use in nerve tissue regeneration.ConclusionIt is suggested that an in vitro-produced olfactory stem cell mass can be applied to a very small damaged region and could have a high potential for microenvironment formation.


Author(s):  
Hirofumi Kiyokawa ◽  
Akira Yamaoka ◽  
Chisa Matsuoka ◽  
Tomoko Tokuhara ◽  
Takaya Abe ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Sevda Pouraghaei Sevari ◽  
Sahar Ansari ◽  
Alireza Moshaverinia

AbstractTissue engineering approaches have emerged recently to circumvent many limitations associated with current clinical practices. This elegant approach utilizes a natural/synthetic biomaterial with optimized physiomechanical properties to serve as a vehicle for delivery of exogenous stem cells and bioactive factors or induce local recruitment of endogenous cells for in situ tissue regeneration. Inspired by the natural microenvironment, biomaterials could act as a biomimetic three-dimensional (3D) structure to help the cells establish their natural interactions. Such a strategy should not only employ a biocompatible biomaterial to induce new tissue formation but also benefit from an easily accessible and abundant source of stem cells with potent tissue regenerative potential. The human teeth and oral cavity harbor various populations of mesenchymal stem cells (MSCs) with self-renewing and multilineage differentiation capabilities. In the current review article, we seek to highlight recent progress and future opportunities in dental MSC-mediated therapeutic strategies for tissue regeneration using two possible approaches, cell transplantation and cell homing. Altogether, this paper develops a general picture of current innovative strategies to employ dental-derived MSCs combined with biomaterials and bioactive factors for regenerating the lost or defective tissues and offers information regarding the available scientific data and possible applications.


Author(s):  
Gleb Nikolaevich Zyuz’kov ◽  
Larisa Arkad`evna Miroshnichenko ◽  
Elena Vladislavovna Simanina ◽  
Larisa Alexandrovna Stavrova ◽  
Tatyana Yur`evna Polykova

Abstract Objectives The development of approaches to the treatment of neurodegenerative diseases caused by alcohol abuse by targeted pharmacological regulation of intracellular signaling transduction of progenitor cells of nerve tissue is promising. We studied peculiarities of participation of NF-кB-, сАМР/РКА-, JAKs/STAT3-, ERK1/2-, p38-pathways in the regulation of neural stem cells (NSC) and neuronal-committed progenitors (NCP) in the simulation of ethanol-induced neurodegeneration in vitro and in vivo. Methods In vitro, the role of signaling molecules (NF-кB, сАМР, РКА, JAKs, STAT3, ERK1/2, p38) in realizing the growth potential of neural stem cells (NSC) and neuronal-committed progenitors (NCP) in ethanol-induced neurodegeneration modeled in vitro and in vivo was studied. To do this, the method of the pharmacological blockade with the use of selective inhibitors of individual signaling molecules was used. Results Several of fundamental differences in the role of certain intracellular signaling molecules (SM) in proliferation and specialization of NSC and NCP have been revealed. It has been shown that the effect of ethanol on progenitors is accompanied by the formation of a qualitatively new pattern of signaling pathways. Data have been obtained on the possibility of stimulation of nerve tissue regeneration in ethanol-induced neurodegeneration by NF-кB and STAT3 inhibitors. It has been found that the blockage of these SM stimulates NSC and NCP in conditions of ethanol intoxication and does not have a «negative» effect on the realization of the growth potential of intact progenitors (which will appear de novo during therapy). Conclusions The results may serve as a basis for the development of fundamentally new drugs to the treatment of alcoholic encephalopathy and other diseases of the central nervous system associated with alcohol abuse.


2016 ◽  
Vol 4 (20) ◽  
pp. 3515-3525 ◽  
Author(s):  
Shirae K. Leslie ◽  
Anthony M. Nicolini ◽  
Gobalakrishnan Sundaresan ◽  
Jamal Zweit ◽  
Barbara D. Boyan ◽  
...  

Alginate microbeads incorporating adipose-derived stem cells (ASCs) have potential for delivering viable cells capable of facilitating tissue regeneration.


Sign in / Sign up

Export Citation Format

Share Document