Effects of Nicotine and Histone Deacetylase Inhibitors on the Brain

2019 ◽  
pp. 365-373
Author(s):  
Maria Paula Faillace ◽  
Ramon O. Bernabeu
2018 ◽  
Author(s):  
Soo-Hyun Kim ◽  
Richard P. Redvers ◽  
Lap Hing Chi ◽  
Xiawei Ling ◽  
Andrew J. Lucke ◽  
...  

ABSTRACTBreast cancer brain metastasis remains largely incurable. While several mouse models have been developed to investigate the genes and mechanisms regulating breast cancer brain metastasis, these models often lack clinical relevance since they require the use of immune-compromised mice and/or are poorly metastatic to brain from the mammary gland. We describe the development and characterisation of an aggressive brain metastatic variant of the 4T1 syngeneic model (4T1Br4) that spontaneously metastasises to multiple organs, but is selectively more metastatic to the brain from the mammary gland than parental 4T1 tumours. By immunohistochemistry, 4T1Br4 tumours and brain metastases display a triple negative phenotype, consistent with the high propensity of this breast cancer subtype to spread to brain. In vitro assays indicate that 4T1Br4 cells have an enhanced ability to adhere to or migrate across a brain-derived endothelial monolayer and greater invasive response to brain-derived soluble factors compared to 4T1 cells. These properties are likely to contribute to the brain-selectivity of 4T1Br4 tumours. Expression profiling and gene set enrichment analyses demonstrate the clinical relevance of the 4T1Br4 model at the transcriptomic level. Pathway analyses implicate tumour-intrinsic immune regulation and vascular interactions in successful brain colonisation, revealing potential therapeutic targets. Evaluation of two histone deacetylase inhibitors, SB939 and 1179.4b, shows partial efficacy against 4T1Br4 metastasis to brain and other sites in vivo and potent radio-sensitising properties in vitro. The 4T1Br4 model provides a clinically relevant tool for mechanistic studies and to evaluate novel therapies against brain metastasis.SUMMARY STATEMENTWe introduce a new syngeneic mouse model of spontaneous breast cancer brain metastasis, demonstrate its phenotypic, functional and transcriptomic relevance to human TNBC brain metastasis and test novel therapies.


2012 ◽  
Vol 27 (9) ◽  
pp. 1164-1173 ◽  
Author(s):  
Elisabetta Soragni ◽  
Chunping Xu ◽  
Heather L. Plasterer ◽  
Vincent Jacques ◽  
James R. Rusche ◽  
...  

Numerous studies have pointed to histone deacetylase inhibitors as potential therapeutics for various neurodegenerative diseases, and clinical trials with several histone deacetylase inhibitors have been performed or are under way. However, histone deacetylase inhibitors tested to date either are highly cytotoxic or have very low specificities for different histone deacetylase enzymes. The authors’ laboratories have identified a novel class of histone deacetylase inhibitors (2-aminobenzamides) that reverses heterochromatin-mediated silencing of the frataxin ( FXN) gene in Friedreich ataxia. The authors have identified the histone deacetylase enzyme isotype target of these compounds and present evidence that compounds that target this enzyme selectively increase FXN expression from pathogenic alleles. Studies with model compounds show that these histone deacetylase inhibitors increase FXN messenger RNA levels in the brain in mouse models for Friedreich ataxia and relieve neurological symptoms observed in mouse models and support the notion that this class of molecules may serve as therapeutics for the human disease.


Sign in / Sign up

Export Citation Format

Share Document