Evolution of prosthetic feet and design based on gait analysis data

Author(s):  
Bonacini Daniele
Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 789
Author(s):  
David Kreuzer ◽  
Michael Munz

With an ageing society comes the increased prevalence of gait disorders. The restriction of mobility leads to a considerable reduction in the quality of life, because associated falls increase morbidity and mortality. Consideration of gait analysis data often alters surgical recommendations. For that reason, the early and systematic diagnostic treatment of gait disorders can spare a lot of suffering. As modern gait analysis systems are, in most cases, still very costly, many patients are not privileged enough to have access to comparable therapies. Low-cost systems such as inertial measurement units (IMUs) still pose major challenges, but offer possibilities for automatic real-time motion analysis. In this paper, we present a new approach to reliably detect human gait phases, using IMUs and machine learning methods. This approach should form the foundation of a new medical device to be used for gait analysis. A model is presented combining deep 2D-convolutional and LSTM networks to perform a classification task; it predicts the current gait phase with an accuracy of over 92% on an unseen subject, differentiating between five different phases. In the course of the paper, different approaches to optimize the performance of the model are presented and evaluated.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6331
Author(s):  
Uri Gottlieb ◽  
Tharani Balasukumaran ◽  
Jay R. Hoffman ◽  
Shmuel Springer

Backward walking (BW) is being increasingly used in neurologic and orthopedic rehabilitation as well as in sports to promote balance control as it provides a unique challenge to the sensorimotor control system. The identification of initial foot contact (IC) and terminal foot contact (TC) events is crucial for gait analysis. Data of optical motion capture (OMC) kinematics and inertial motion units (IMUs) are commonly used to detect gait events during forward walking (FW). However, the agreement between such methods during BW has not been investigated. In this study, the OMC kinematics and inertial data of 10 healthy young adults were recorded during BW and FW on a treadmill at different speeds. Gait events were measured using both kinematics and inertial data and then evaluated for agreement. Excellent reliability (Interclass Correlation > 0.9) was achieved for the identification of both IC and TC. The absolute differences between methods during BW were 18.5 ± 18.3 and 20.4 ± 15.2 ms for IC and TC, respectively, compared to 9.1 ± 9.6 and 10.0 ± 14.9 for IC and TC, respectively, during FW. The high levels of agreement between methods indicate that both may be used for some applications of BW gait analysis.


1997 ◽  
Vol 21 (1) ◽  
pp. 17-27 ◽  
Author(s):  
K. Postema ◽  
H. J. Hermens ◽  
J. De Vries ◽  
H. F.J.M. Koopman ◽  
W. H. Eisma

The energy storing and releasing behaviour of 2 energy storing feet (ESF) and 2 conventional prosthetic feet (CF) were compared (ESF: Otto Bock Dynamic Pro and Hanger Quantum; CF: Otto Bock Multi Axial and Otto Bock Lager). Ten trans-tibial amputees were selected. The study was designed as a double-blind, randomised trial. For gait analysis a VICON motion analysis system was used with 2 AMTI force platforms. A special measuring device was used for measuring energy storage and release of the foot during a simulated step. The impulses of the anteroposterior component of the ground force showed small, statistically non-significant differences (deceleration phase: 22.7–23.4 Ns; acceleration phase: 17.0–18.4 Ns). The power storage and release phases as well as the net results also showed small differences (maximum difference in net result is 0.03 J kg−1). It was estimated that these differences lead to a maximum saving of 3% of metabolic energy during walking. It was considered unlikely that the subjects would notice this difference. It was concluded that during walking differences in mechanical energy expenditure of this magnitude are probably not of clinical relevance. Ankle power, as an indicator for energy storage and release gave different results to the energy storage and release as measured with the special test device, especially during landing response. In the biomechanical model (based on inverse dynamics) used in the gait analysis the deformation of the material is not taken into consideration and hence this method of gait analysis is probably not suitable for calculation of shock absorption.


2011 ◽  
Vol 33 ◽  
pp. S10-S11
Author(s):  
S. Del Din ◽  
A. Bertoldo ◽  
Z. Sawacha ◽  
M. Rabuffetti ◽  
M. Laganà ◽  
...  

2009 ◽  
Vol 30 ◽  
pp. S14
Author(s):  
Joseph Bevins ◽  
Sarah Churchill ◽  
Mark Corbett ◽  
Ralph Palmer ◽  
David Pratt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document