The presence and importance of internal mixing processes in the Arctic Ocean

2022 ◽  
pp. 277-315
Author(s):  
Bert Rudels
2021 ◽  
Author(s):  
Anne-Marie Wefing ◽  
Núria Casacuberta ◽  
Marcus Christl ◽  
Michael Karcher ◽  
Paul A. Dodd

<p>Anthropogenic chemical tracers are powerful tools to study pathways, water mass provenance and mixing processes in the ocean. Releases of the long-lived anthropogenic radionuclides <sup>129</sup>I and <sup>236</sup>U from European nuclear reprocessing plants label Atlantic Water entering the Arctic Ocean with a distinct signal that can be used to track pathways and timescales of Atlantic Water circulation in the Arctic Ocean and Fram Strait. Apart from their application as transient tracers, the difference in anthropogenic radionuclide concentrations between Atlantic- and Pacific-origin water provides an instrument to distinguish the interface between both water masses. In contrast to classically used water mass tracers such as nitrate-phosphate (N:P) ratios, the two radionuclides are considered to behave conservatively in seawater and are not affected by biogeochemical processes occurring in particular in the broad shelf regions of the Arctic Ocean.</p><p>Here we present a time-series of <sup>129</sup>I and <sup>236</sup>U data across the Fram Strait, collected in 2016 (as part of the GEOTRACES program) and in 2018 and 2019 (by the Norwegian Polar Institute). While the overall spatial distribution of both radionuclides was similar among the three sampling years, significant differences were observed in the upper water column of the EGC, especially between 2016 and 2018. This study is the first attempt to investigate the potential of <sup>129</sup>I and <sup>236</sup>U as water mass composition tracers in the East Greenland Current (EGC). We discuss how the <sup>129</sup>I - <sup>236</sup>U tracer pair can be applied to estimate fractions of Atlantic and Pacific Water, especially considering their time-dependent input into the Arctic Ocean.</p>


Data Series ◽  
10.3133/ds862 ◽  
2014 ◽  
Author(s):  
Lisa L. Robbins ◽  
Jonathan Wynn ◽  
Paul O. Knorr ◽  
Bogdan Onac ◽  
John T. Lisle ◽  
...  

2020 ◽  
Vol 29 (1) ◽  
pp. 138-154
Author(s):  
R.V. Smirnov ◽  
O.V. Zaitseva ◽  
A.A. Vedenin

A new species of Pogonophora obtained from one station at a depth of 25 m from near the Dikson Island in the Kara Sea is described. Galathealinum karaense sp. nov. is one of the largest pogonophorans, the first known representative of the rare genus Galathealinum Kirkegaard, 1956 in the Eurasian part of the Arctic Ocean and a highly unusual finding for the desalted shallow of the Yenisey Gulf. Several characters occurring in the new species are rare or unique among the congeners: under-developed, hardly discernible frills on the tube segments, extremely thin felted fibres in the external layer of the tube, and very faintly separated papillae in the anterior part of the trunk. Morphological characters useful in distinguishing species within the genus Galathealinum are defined and summarised in a table. Diagnosis of the genus Galathealinum is emended and supplemented by new characters. Additionally, three taxonomic keys are provided to the species of Galathealinum and to the known species of the Arctic pogonophorans using either animals or their empty tubes only, with the brief zoogeographical information on each Arctic species.


Author(s):  
A. Vylegzhanin ◽  
◽  
V. Salygin ◽  
I. Dudykina ◽  
E. Kienko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document