EMI shielding textile materials based on conducting polymers

Author(s):  
Tomasz Rybicki ◽  
Iwona Karbownik
2021 ◽  
pp. 152808372110370
Author(s):  
Faiza Safdar ◽  
Munir Ashraf ◽  
Amjed Javid ◽  
Kashif Iqbal

The rapid proliferation of electronic devices and their operation at high frequencies has raised the contamination of artificial electromagnetic radiations in the atmosphere to an unprecedented level that is responsible for catastrophe for ecology and electronic devices. Therefore, the lightweight and flexible electromagnetic interference (EMI) shielding materials are of vital importance for controlling the pollution generated by such high-frequency EM radiations for protecting ecology and human health as well as the other nearby devices. In this regard, polymeric textile-based shielding composites have been proved to be the best due to their unique properties such as lightweight, excellent flexibility, low density, ease of processability and ease of handling. Moreover, such composites cover range of applications from everyday use to high-tech applications. Various polymeric textiles such as fibers, yarn, woven, nonwoven, knitted, as well as their hybrid composites have been extensively manipulated physically and/or chemically to act as shielding against such harmful radiations. This review encompasses from basic concept of EMI shielding for beginner to the latest research in polymeric-based textile materials synthesis for experts, covering detailed mechanisms with schematic illustration. The review also covers the gap of materials synthesis and their application on polymeric textiles which could be used for EMI shielding applications. Furthermore, recent research regarding rendering EMI shielding properties at various stages of polymeric textile development is provided for readers with critical analysis. Lastly, the applications along with environmental compliance have also been presented for better understanding.


Author(s):  
Vitalija Rubežienė ◽  
Sandra Varnaitė-Žuravliova

MRS Bulletin ◽  
2021 ◽  
Author(s):  
Anja Lund ◽  
Yunyun Wu ◽  
Benji Fenech-Salerno ◽  
Felice Torrisi ◽  
Tricia Breen Carmichael ◽  
...  

Abstract To realize the full gamut of functions that are envisaged for electronic textiles (e-textiles) a range of semiconducting, conducting and electrochemically active materials are needed. This article will discuss how metals, conducting polymers, carbon nanotubes, and two-dimensional (2D) materials, including graphene and MXenes, can be used in concert to create e-textile materials, from fibers and yarns to patterned fabrics. Many of the most promising architectures utilize several classes of materials (e.g., elastic fibers composed of a conducting material and a stretchable polymer, or textile devices constructed with conducting polymers or 2D materials and metal electrodes). While an increasing number of materials and devices display a promising degree of wash and wear resistance, sustainability aspects of e-textiles will require greater attention. Graphical abstract


2017 ◽  
Vol 53 (53) ◽  
pp. 7182-7193 ◽  
Author(s):  
Linden Allison ◽  
Steven Hoxie ◽  
Trisha L. Andrew

Traditional textile materials can be transformed into functional electronic components upon being dyed or coated with films of intrinsically conducting polymers, such as poly(aniline), poly(pyrrole) and poly(3,4-ethylenedioxythiophene).


Author(s):  
J. Fink

Conducting polymers comprises a new class of materials achieving electrical conductivities which rival those of the best metals. The parent compounds (conjugated polymers) are quasi-one-dimensional semiconductors. These polymers can be doped by electron acceptors or electron donors. The prototype of these materials is polyacetylene (PA). There are various other conjugated polymers such as polyparaphenylene, polyphenylenevinylene, polypoyrrole or polythiophene. The doped systems, i.e. the conducting polymers, have intersting potential technological applications such as replacement of conventional metals in electronic shielding and antistatic equipment, rechargable batteries, and flexible light emitting diodes.Although these systems have been investigated almost 20 years, the electronic structure of the doped metallic systems is not clear and even the reason for the gap in undoped semiconducting systems is under discussion.


1985 ◽  
Vol 46 (9) ◽  
pp. 1595-1601 ◽  
Author(s):  
F. Devreux ◽  
G. Bidan ◽  
A.A. Syed ◽  
C. Tsintavis

Sign in / Sign up

Export Citation Format

Share Document