Gas field pilot production test and dynamic description of gas reservoir

Author(s):  
Huinong Zhuang ◽  
Yongxin Han ◽  
Hedong Sun ◽  
Xiaohua Liu
2016 ◽  
Vol 57 (7) ◽  
pp. 1064-1077 ◽  
Author(s):  
Ding Xiaoqi ◽  
Yang Peng ◽  
Han Meimei ◽  
Chen Yang ◽  
Zhang Siyang ◽  
...  

Geology ◽  
2020 ◽  
Author(s):  
Berend A. Verberne ◽  
Suzanne J.T. Hangx ◽  
Ronald P.J. Pijnenburg ◽  
Maartje F. Hamers ◽  
Martyn R. Drury ◽  
...  

Europe’s largest gas field, the Groningen field (the Netherlands), is widely known for induced subsidence and seismicity caused by gas pressure depletion and associated compaction of the sandstone reservoir. Whether compaction is elastic or partly inelastic, as implied by recent experiments, is a key factor in forecasting system behavior and seismic hazard. We sought evidence for inelastic deformation through comparative microstructural analysis of unique drill core recovered from the seismogenic center of the field in 2015, 50 yr after gas production started, versus core recovered before production (1965). Quartz grain fracturing, crack healing, and stress-induced Dauphiné twinning are equally developed in the 2015 and 1965 cores, with the only measurable effect of gas production being enhanced microcracking of sparse K-feldspar grains in the 2015 core. Interpreting these grains as strain markers, we suggest that reservoir compaction involves elastic strain plus inelastic compression of weak clay films within grain contacts.


SPE Journal ◽  
2011 ◽  
Vol 17 (01) ◽  
pp. 163-176 ◽  
Author(s):  
M.. Glegola ◽  
P.. Ditmar ◽  
R.G.. G. Hanea ◽  
F.C.. C. Vossepoel ◽  
R.. Arts ◽  
...  

Summary Water influx into gas fields can reduce recovery factors by 10–40%. Therefore, information about the magnitude and spatial distribution of water influx is essential for efficient management of waterdrive gas reservoirs. Modern geophysical techniques such as gravimetry may provide a direct measure of mass redistribution below the surface, yielding additional and valuable information for reservoir monitoring. In this paper, we investigate the added value of gravimetric observations for water-influx monitoring into a gas field. For this purpose, we use data assimilation with the ensemble Kalman filter (EnKF) method. To understand better the limitations of the gravimetric technique, a sensitivity study is performed. For a simplified gas-reservoir model, we assimilate the synthetic gravity measurements and estimate reservoir permeability. The updated reservoir model is used to predict the water-front position. We consider a number of possible scenarios, making various assumptions on the level of gravity measurement noise and on the distance from the gravity observation network to the reservoir formation. The results show that with increasing gravimetric noise and/or distance, the updated model permeability becomes smoother and its variance higher. Finally, we investigate the effect of a combined assimilation of gravity and production data. In the case when only production observations are used, the permeability estimates far from the wells can be erroneous, despite a very accurate history match of the data. In the case when both production and gravity data are combined within a single data assimilation framework, we obtain a considerably improved estimation of the reservoir permeability and an improved understanding of the subsurface mass flow. These results illustrate the complementarity of both types of measurements, and more generally, the experiments show clearly the added value of gravity data for monitoring water influx into a gas field.


2013 ◽  
Vol 734-737 ◽  
pp. 480-483
Author(s):  
Jun Bao Ma ◽  
Yu Long Ma ◽  
Chao Sun ◽  
Jian Guo Wang

The gas-water relations of low-permeability tight sand gas reservoir are complex and not necessarily linked to the structural relief, phenomenon that water is distributed in high structural position while gas in low structural position is common what makes it difficult to make a refined description of gas-water relations and distribution low. The article takes Zizhou gas field for example, establishes 4 gas-water relations modes of single well to analyze some profiles where there is abnormal phenomenon water up gas down, the fact is that water and gas are distributed in different sand bodies and Zizhou Gas Field is not a deep basin gas reservoir. The research shows the phenomenon that water up gas down does not exist, the gas-water relations are normal. The research results have certain significance for the determination of gas-water distribution law.


Sign in / Sign up

Export Citation Format

Share Document