Practice and Lessons Learned for the Development of Naturally Fractured Carbonate Gas Reservoir in Weiyuan Gas Field of Sichuan Basin, China

2016 ◽  
Author(s):  
Yujin Wan ◽  
Yunhe Su
Author(s):  
Zhaozhong Yang ◽  
Rui He ◽  
Xiaogang Li ◽  
Zhanling Li ◽  
Ziyuan Liu

The tight sandstone gas reservoir in southern Songliao Basin is naturally fractured and is characterized by its low porosity and permeability. Large-scale hydraulic fracturing is the most effective way to develop this tight gas reservoir. Quantitative evaluation of fracability is essential for optimizing a fracturing reservoir. In this study, as many as ten fracability-related factors, particularly mechanical brittleness, mineral brittleness, cohesion, internal friction angle, unconfined compressive strength (UCS), natural fracture, Model-I toughness, Model-II toughness, horizontal stress difference, and fracture barrier were obtained from a series of petrophysical and geomechanical experiments are analyzed. Taking these influencing factors into consideration, a modified comprehensive evaluation model is proposed based on the analytic hierarchy process (AHP). Both a transfer matrix and a fuzzy matrix were introduced into this model. The fracability evaluation of four reservoir intervals in Jinshan gas field was analyzed. Field fracturing tests were conducted to verify the efficiency and accuracy of the proposed evaluation model. Results showed that gas production is higher and more stable in the reservoir interval with better fracability. The field test data coincides with the results of the proposed evaluation model.


2012 ◽  
Author(s):  
Lawrence A.P. Camilleri ◽  
Leila Hamza ◽  
Ozhan Ahmet Yucel ◽  
Vincent Fabien Rodet ◽  
Baptiste Breton

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-23
Author(s):  
Hongwu Lei ◽  
Qian Zhang ◽  
Xiaochun Li

Depleted gas reservoirs are important potential sites for CO2 geological sequestration due to their proven integrity and safety, well-known geological characteristics, and existing infrastructures and wells built for natural gas production. The Sichuan Basin has a large number of gas fields in which approximately 5.89×109 tons of CO2 can be stored. The Huangcaoxia gas field has the best opportunity in the eastern Sichuan Basin for a pilot project of CO2 sequestration due to its relatively large storage capacity and the nearly depleted state. A coupled thermal-hydrodynamic model including faults is built based on the geological and hydrogeological conditions in the Huangcaoxia gas field. The results of the numerical simulations show that the downhole temperature is above 80°C at a downhole pressure of 14 MPa under the constraint of temperature drop in the reservoir due to the strong Joule-Thomson effect. The corresponding injection pressure and temperature at the wellhead are 10.5 MPa and 60°C, respectively. The sizes of the pressure and CO2 plumes after an injection of 10 years are 18 km and 5 km, respectively. The zone affected by temperature change is very small, being about 1-2 km away from the injection well. The injection rate in the injection well Cao 31 averages 6.89 kg/s (21.73×104 tons/a). For a commercial-scale injection, another four wells (Cao 9, Cao 30, Cao 6, and Cao 22) can be combined with the Cao 31 well for injection, approaching an injection rate of 35 kg/s (1.10×106 tons/a). Both the pressure and temperature of CO2 injection decrease with the increasing depleted pressure in the gas reservoir when the latter is below 6 MPa. With the technique of CO2-enhanced gas recovery (CO2-EGR), the CO2 injection rate is improved and approximately 1.58×107 kg of gas can be produced during a studied time period of 10 years.


2013 ◽  
Vol 868 ◽  
pp. 682-685 ◽  
Author(s):  
Lin Jing Xu ◽  
Shi Cheng Zhang ◽  
Jian Ye Mou

In acid fracturing, excessive acid leakoff is thought to be the main reason that limits fracture propagation and live acid penetration distance, so its very important to do research about acid leak-off on naturally fractured carbonates. we developed a new model in this paper to simulate acid leakoff into a naturally fractured carbonates gas reservoir during acid fracturing. Our model incorporates the acid-rock reaction on the fractured surfaces. Given the information of the Puguang gas reservoir, the model predicts acid filtration and leakoff rate over time. In this study, we found that acid leak-off mechanism in naturally fractured carbonates is much different from that in reservoirs without natural fractures. The leakoff volume is several times of nonreactive acid. Since the acid widened natural fractures, leakoff velocity increase with time firstly , then decrease. While the leakoff velocity of the nonreactive fluid decrease sustained. We also analyze other sensitivity parameters of the acid leakoff. In this model, we explain the acid leakoff mechanism in naturally fractured carbonates, and provide a more accurate calculating of fluid loss.


2011 ◽  
Vol 85 (1) ◽  
pp. 233-242 ◽  
Author(s):  
LONG Shengxiang ◽  
HUANG Renchun ◽  
LI Hongtao ◽  
YOU Yuchun ◽  
LIU Guoping ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document