Two Phase Processing of Metal Matrix Composites

Author(s):  
Penchal Reddy Matli ◽  
Tirumalai Srivatsan ◽  
Gupta Manoj
Wear ◽  
2013 ◽  
Vol 301 (1-2) ◽  
pp. 130-136 ◽  
Author(s):  
G.H.S. Gava ◽  
R.M. Souza ◽  
J.D.B. de Mello ◽  
M.C.S. de Macêdo ◽  
C. Scandian

1994 ◽  
Vol 116 (3) ◽  
pp. 310-318 ◽  
Author(s):  
J. W. Ju ◽  
Tsung-Muh Chen

A micromechanical framework is presented to predict effective (overall) elasto-(visco-)plastic behavior of two-phase particle-reinforced metal matrix composites (PRMMC). In particular, the inclusion phase (particle) is assumed to be elastic and the matrix material is elasto-(visco-)plastic. Emanating from Ju and Chen’s (1994a,b) work on effective elastic properties of composites containing many randomly dispersed inhomogeneities, effective elastoplastic deformations and responses of PRMMC are estimated by means of the “effective yield criterion” derived micromechanically by considering effects due to elastic particles embedded in the elastoplastic matrix. The matrix material is elastic or plastic, depending on local stress and deformation, and obeys general plastic flow rule and hardening law. Arbitrary (general) loadings and unloadings are permitted in our framework through the elastic predictor-plastic corrector two-step operator splitting methodology. The proposed combined micromechanical and computational approach allows us to estimate overall elastoplastic responses of PRMMCs by accounting for the microstructural information (such as the spatial distribution and micro-geometry of particles), elastic properties of constituent phases, and the plastic behavior of the matrix-only materials. Comparison between our theoretical predictions and experimental data on uniaxial elastoplastic tests for PRMMCs is also presented to illustrate the capability of the proposed framework. A straightforward extension to accommodate viscoplastic matrix material is also presented to further enhance the applicability of the proposed method.


Author(s):  
A. Lawley ◽  
M. R. Pinnel ◽  
A. Pattnaik

As part of a broad program on composite materials, the role of the interface on the micromechanics of deformation of metal-matrix composites is being studied. The approach is to correlate elastic behavior, micro and macroyielding, flow, and fracture behavior with associated structural detail (dislocation substructure, fracture characteristics) and stress-state. This provides an understanding of the mode of deformation from an atomistic viewpoint; a critical evaluation can then be made of existing models of composite behavior based on continuum mechanics. This paper covers the electron microscopy (transmission, fractography, scanning microscopy) of two distinct forms of composite material: conventional fiber-reinforced (aluminum-stainless steel) and directionally solidified eutectic alloys (aluminum-copper). In the former, the interface is in the form of a compound and/or solid solution whereas in directionally solidified alloys, the interface consists of a precise crystallographic boundary between the two constituents of the eutectic.


Author(s):  
M. G. Burke ◽  
M. N. Gungor ◽  
P. K. Liaw

Aluminum-based metal matrix composites offer unique combinations of high specific strength and high stiffness. The improvement in strength and stiffness is related to the particulate reinforcement and the particular matrix alloy chosen. In this way, the metal matrix composite can be tailored for specific materials applications. The microstructural characterization of metal matrix composites is thus important in the development of these materials. In this study, the structure of a p/m 2014-SiC particulate metal matrix composite has been examined after extrusion and tensile deformation.Thin-foil specimens of the 2014-20 vol.% SiCp metal matrix composite were prepared by dimpling to approximately 35 μm prior to ion-milling using a Gatan Dual Ion Mill equipped with a cold stage. These samples were then examined in a Philips 400T TEM/STEM operated at 120 kV. Two material conditions were evaluated: after extrusion (80:1); and after tensile deformation at 250°C.


Sign in / Sign up

Export Citation Format

Share Document