Theoretical models for the anisotropic conductivities of two-phase and three-phase metal-matrix composites

1995 ◽  
Vol 43 (8) ◽  
pp. 3045-3059 ◽  
Author(s):  
R. Pitchumani ◽  
P.K. Liaw ◽  
S.C. Yao ◽  
D.K. Hsu ◽  
H. Jeong
Wear ◽  
2013 ◽  
Vol 301 (1-2) ◽  
pp. 130-136 ◽  
Author(s):  
G.H.S. Gava ◽  
R.M. Souza ◽  
J.D.B. de Mello ◽  
M.C.S. de Macêdo ◽  
C. Scandian

Author(s):  
J. W. Ju ◽  
H. N. Ruan ◽  
Y. F. Ko

A micromechanical evolutionary damage model is proposed to predict the overall elastoplastic behavior and interfacial damage evolution of fiber-reinforced metal matrix composites. Progressive debonded fibers are replaced by equivalent voids. The effective elastic moduli of three-phase composites, composed of a ductile matrix, randomly located yet unidirectionally aligned circular fibers, and voids, are derived by using a rigorous micromechanical formulation. In order to characterize the overall elastoplastic behavior, an effective yield criterion is derived based on the ensemble-area averaging process and the first-order effects of eigenstrains.


1994 ◽  
Vol 116 (3) ◽  
pp. 310-318 ◽  
Author(s):  
J. W. Ju ◽  
Tsung-Muh Chen

A micromechanical framework is presented to predict effective (overall) elasto-(visco-)plastic behavior of two-phase particle-reinforced metal matrix composites (PRMMC). In particular, the inclusion phase (particle) is assumed to be elastic and the matrix material is elasto-(visco-)plastic. Emanating from Ju and Chen’s (1994a,b) work on effective elastic properties of composites containing many randomly dispersed inhomogeneities, effective elastoplastic deformations and responses of PRMMC are estimated by means of the “effective yield criterion” derived micromechanically by considering effects due to elastic particles embedded in the elastoplastic matrix. The matrix material is elastic or plastic, depending on local stress and deformation, and obeys general plastic flow rule and hardening law. Arbitrary (general) loadings and unloadings are permitted in our framework through the elastic predictor-plastic corrector two-step operator splitting methodology. The proposed combined micromechanical and computational approach allows us to estimate overall elastoplastic responses of PRMMCs by accounting for the microstructural information (such as the spatial distribution and micro-geometry of particles), elastic properties of constituent phases, and the plastic behavior of the matrix-only materials. Comparison between our theoretical predictions and experimental data on uniaxial elastoplastic tests for PRMMCs is also presented to illustrate the capability of the proposed framework. A straightforward extension to accommodate viscoplastic matrix material is also presented to further enhance the applicability of the proposed method.


2005 ◽  
Vol 475-479 ◽  
pp. 3299-3302
Author(s):  
M. Zhang ◽  
W.L. Zhang ◽  
M.Y. Gu

To improve the transverse properties of fiber-reinforced metal matrix composites, a three-phase material model was proposed. In the model the reinforcing fibers are surrounded by a weak metal matrix, which in turn is encircled by another strong metal matrix. The weak matrix acts as a role to protect the fibers from damage and the strong matrix acts as a role to improve the transverse properties of the composite. Based on the material model, FEM model was established and parameter analysis was carried out to determine the influence of matrix strengths and fibers spatial distribution on the transverse mechanical behavior of the three-phase composite. It was found that the yield strength of the three-phase composite was mainly dictated by the matrix directly surrounding fibers and the effect from another matrix on the yield strength can be neglected. The three-phase composite has a higher transverse strength with hexagonal fiber arrangement than with regular square fiber arrangement.


Sign in / Sign up

Export Citation Format

Share Document