Optimized deployment of UAV base stations for providing wireless communication service in urban environments

2022 ◽  
pp. 159-178
Author(s):  
Hailong Huang ◽  
Andrey V. Savkin ◽  
Chao Huang
2009 ◽  
Vol 9 (7) ◽  
pp. 2413-2418 ◽  
Author(s):  
N. David ◽  
P. Alpert ◽  
H. Messer

Abstract. We propose a new technique that overcomes the obstacles of the existing methods for monitoring near-surface water vapour, by estimating humidity from data collected through existing wireless communication networks. Weather conditions and atmospheric phenomena affect the electromagnetic channel, causing attenuations to the radio signals. Thus, wireless communication networks are in effect built-in environmental monitoring facilities. The wireless microwave links, used in these networks, are widely deployed by cellular providers for backhaul communication between base stations, a few tens of meters above ground level. As a result, if all available measurements are used, the proposed method can provide moisture observations with high spatial resolution and potentially high temporal resolution. Further, the implementation cost is minimal, since the data used are already collected and saved by the cellular operators. In addition – many of these links are installed in areas where access is difficult such as orographic terrain and complex topography. As such, our method enables measurements in places that have been hard to measure in the past, or have never been measured before. The technique is restricted to weather conditions which exclude rain, fog or clouds along the propagation path. Strong winds that may cause movement of the link transmitter or receiver (or both) may also interfere with the ability to conduct accurate measurements. We present results from real-data measurements taken from two microwave links used in a backhaul cellular network that show convincing correlation to surface station humidity measurements. The measurements were taken daily in two sites, one in northern Israel (28 measurements), the other in central Israel (29 measurements). The correlation between the microwave link measurements and the humidity gauges were 0.9 and 0.82 for the north and central sites, respectively. The Root Mean Square Differences (RMSD) were 1.8 g/m3 and 3.4 g/m3 for the northern and central site measurements, respectively.


Author(s):  
Abdelmoula Ait Allal ◽  
Loubna El Amrani ◽  
Abdelfatteh Haidine ◽  
Khalifa Mansouri ◽  
Mohamed Youssfi

The enhanced automation of the shipping industry has increased the demand of real data exchange. The ship-owners are looking more and more to optimize the operational cost of ship, to monitor remotely the cargo and to ensure a satisfactory level of safety and security, in compliance with the international maritime organization requirements. As per international convention for the safety of life at sea requirements, a conventional ship must carry a global maritime distress safety system, depending on the sea areas where it is operating. We assume that assuring a reliable communication service in the shipping industry is a challenging issue, in an era of internet of things and the need for a ship to be continuously connected to its ecosystem. This connectivity should be with a high data rate transmission. However, the future implementation of autonomous ship beside the existing conventional ship as an alternative for a sustainable maritime industry, requires the implementation of a reliable and cost-effective communication carrier, capable to transfer operational data on live basis from ship-to-ship and from ship-to-shore without interruption with a very low latency. To achieve this goal, we propose in this work, the implementation of 5G network as a maritime communication carrier, using unmanned aerial vehicle base stations, which are placed at optimum positions. This placement results in a maximization of uplink and downlink communication data rate, low latency and efficient optimization of transmission power. These make of 5G a potential maritime communication service carrier, capable to support the safe operation of deep-sea conventional vessels and the future deployment of autonomous ships.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yiqiao Wei ◽  
Seung-Hoon Hwang

Ultra-dense cellular networks (UDNs) represent the trend for 5G networks in dense urban environments. With the aim of exploring the optimal extent of network densification under different performance requirements and the trade-off between the network capacity and deployment cost in UDNs, a multiple-objective optimization model is proposed. This novel optimization design consists of a multiattribute user type in which users are grouped based on their propagation conditions and an infinitesimal dividing modeling method termed the ring method for network capacity dimensioning. The optimal cell size is estimated to maximize the total network capacity and minimize the deployment cost under different levels of user capacity demand. Additionally, the corresponding total network capacity and the required number of base stations are presented. Furthermore, two conventional frequency bands, 800 MHz and 1.8 GHz, and two new bands, 3.5 GHz and mmWave 28 GHz, are considered to investigate their feasibility and the potential of higher frequency bands in the 5G network.


2013 ◽  
Vol 416-417 ◽  
pp. 1595-1599
Author(s):  
Wei Hua Ma

Because of the large span of the distance between wireless communication networks, many kinds of interference are encountered in the network signal transmission process, so that the accuracy of receiving the information is affected by the weakened signals and also the communication service quality for the users is reduced. Under this background, the advantages such as remoteness and convenience of wireless communication are first introduced. In the meantime, the factors influencing the signals of the wireless communication network are affected. Finally, the measures for enhancing the signals of the wireless communication network sites are proposed. It is expected that this paper is helpful for the future studies.


Sign in / Sign up

Export Citation Format

Share Document