Prediction of paddy cultivation using deep learning on land cover variation for sustainable agriculture

2022 ◽  
pp. 325-355
Author(s):  
D.A. Meedeniya ◽  
I. Mahakalanda ◽  
D.S. Lenadora ◽  
I. Perera ◽  
S.G.S. Hewawalpita ◽  
...  
2021 ◽  
Vol 13 (3) ◽  
pp. 364
Author(s):  
Han Gao ◽  
Jinhui Guo ◽  
Peng Guo ◽  
Xiuwan Chen

Recently, deep learning has become the most innovative trend for a variety of high-spatial-resolution remote sensing imaging applications. However, large-scale land cover classification via traditional convolutional neural networks (CNNs) with sliding windows is computationally expensive and produces coarse results. Additionally, although such supervised learning approaches have performed well, collecting and annotating datasets for every task are extremely laborious, especially for those fully supervised cases where the pixel-level ground-truth labels are dense. In this work, we propose a new object-oriented deep learning framework that leverages residual networks with different depths to learn adjacent feature representations by embedding a multibranch architecture in the deep learning pipeline. The idea is to exploit limited training data at different neighboring scales to make a tradeoff between weak semantics and strong feature representations for operational land cover mapping tasks. We draw from established geographic object-based image analysis (GEOBIA) as an auxiliary module to reduce the computational burden of spatial reasoning and optimize the classification boundaries. We evaluated the proposed approach on two subdecimeter-resolution datasets involving both urban and rural landscapes. It presented better classification accuracy (88.9%) compared to traditional object-based deep learning methods and achieves an excellent inference time (11.3 s/ha).


2021 ◽  
Vol 13 (13) ◽  
pp. 7044
Author(s):  
Dawei Wen ◽  
Song Ma ◽  
Anlu Zhang ◽  
Xinli Ke

Assessment of ecosystem services supply, demand, and budgets can help to achieve sustainable urban development. The Guangdong-Hong Kong-Macao Greater Bay Area, as one of the most developed megacities in China, sets up a goal of high-quality development while fostering ecosystem services. Therefore, assessing the ecosystem services in this study area is very important to guide further development. However, the spatial pattern of ecosystem services, especially at local scales, is not well understood. Using the available 2017 land cover product, Sentinel-1 SAR and Sentinel-2 optical images, a deep learning land cover mapping framework integrating deep change vector analysis and the ResUnet model was proposed. Based on the produced 10 m land cover map for the year 2020, recent spatial patterns of the ecosystem services at different scales (i.e., the GBA, 11 cities, urban–rural gradient, and pixel) were analyzed. The results showed that: (1) Forest was the primary land cover in Guangzhou, Huizhou, Shenzhen, Zhuhai, Jiangmen, Zhaoqing, and Hong Kong, and an impervious surface was the main land cover in the other four cities. (2) Although ecosystem services in the GBA were sufficient to meet their demand, there was undersupply for all the three general services in Macao and for the provision services in Zhongshan, Dongguan, Shenzhen, and Foshan. (3) Along the urban–rural gradient in the GBA, supply and demand capacity showed an increasing and decreasing trend, respectively. As for the city-level analysis, Huizhou and Zhuhai showed a fluctuation pattern while Jiangmen, Zhaoqing, and Hong Kong presented a decreasing pattern along the gradient. (4) Inclusion of neighborhood landscape led to increased demand scores in a small proportion of impervious areas and oversupply for a very large percent of bare land.


2022 ◽  
Vol 14 (2) ◽  
pp. 274
Author(s):  
Mohamed Marzhar Anuar ◽  
Alfian Abdul Halin ◽  
Thinagaran Perumal ◽  
Bahareh Kalantar

In recent years complex food security issues caused by climatic changes, limitations in human labour, and increasing production costs require a strategic approach in addressing problems. The emergence of artificial intelligence due to the capability of recent advances in computing architectures could become a new alternative to existing solutions. Deep learning algorithms in computer vision for image classification and object detection can facilitate the agriculture industry, especially in paddy cultivation, to alleviate human efforts in laborious, burdensome, and repetitive tasks. Optimal planting density is a crucial factor for paddy cultivation as it will influence the quality and quantity of production. There have been several studies involving planting density using computer vision and remote sensing approaches. While most of the studies have shown promising results, they have disadvantages and show room for improvement. One of the disadvantages is that the studies aim to detect and count all the paddy seedlings to determine planting density. The defective paddy seedlings’ locations are not pointed out to help farmers during the sowing process. In this work we aimed to explore several deep convolutional neural networks (DCNN) models to determine which one performs the best for defective paddy seedling detection using aerial imagery. Thus, we evaluated the accuracy, robustness, and inference latency of one- and two-stage pretrained object detectors combined with state-of-the-art feature extractors such as EfficientNet, ResNet50, and MobilenetV2 as a backbone. We also investigated the effect of transfer learning with fine-tuning on the performance of the aforementioned pretrained models. Experimental results showed that our proposed methods were capable of detecting the defective paddy rice seedlings with the highest precision and an F1-Score of 0.83 and 0.77, respectively, using a one-stage pretrained object detector called EfficientDet-D1 EficientNet.


2020 ◽  
Vol 12 (6) ◽  
pp. 959 ◽  
Author(s):  
Mohammad Pashaei ◽  
Hamid Kamangir ◽  
Michael J. Starek ◽  
Philippe Tissot

Deep learning has already been proved as a powerful state-of-the-art technique for many image understanding tasks in computer vision and other applications including remote sensing (RS) image analysis. Unmanned aircraft systems (UASs) offer a viable and economical alternative to a conventional sensor and platform for acquiring high spatial and high temporal resolution data with high operational flexibility. Coastal wetlands are among some of the most challenging and complex ecosystems for land cover prediction and mapping tasks because land cover targets often show high intra-class and low inter-class variances. In recent years, several deep convolutional neural network (CNN) architectures have been proposed for pixel-wise image labeling, commonly called semantic image segmentation. In this paper, some of the more recent deep CNN architectures proposed for semantic image segmentation are reviewed, and each model’s training efficiency and classification performance are evaluated by training it on a limited labeled image set. Training samples are provided using the hyper-spatial resolution UAS imagery over a wetland area and the required ground truth images are prepared by manual image labeling. Experimental results demonstrate that deep CNNs have a great potential for accurate land cover prediction task using UAS hyper-spatial resolution images. Some simple deep learning architectures perform comparable or even better than complex and very deep architectures with remarkably fewer training epochs. This performance is especially valuable when limited training samples are available, which is a common case in most RS applications.


2019 ◽  
Vol 10 (6) ◽  
pp. 598-606 ◽  
Author(s):  
Feng Ling ◽  
Giles M. Foody

Sign in / Sign up

Export Citation Format

Share Document