scholarly journals Aerial Imagery Paddy Seedlings Inspection Using Deep Learning

2022 ◽  
Vol 14 (2) ◽  
pp. 274
Author(s):  
Mohamed Marzhar Anuar ◽  
Alfian Abdul Halin ◽  
Thinagaran Perumal ◽  
Bahareh Kalantar

In recent years complex food security issues caused by climatic changes, limitations in human labour, and increasing production costs require a strategic approach in addressing problems. The emergence of artificial intelligence due to the capability of recent advances in computing architectures could become a new alternative to existing solutions. Deep learning algorithms in computer vision for image classification and object detection can facilitate the agriculture industry, especially in paddy cultivation, to alleviate human efforts in laborious, burdensome, and repetitive tasks. Optimal planting density is a crucial factor for paddy cultivation as it will influence the quality and quantity of production. There have been several studies involving planting density using computer vision and remote sensing approaches. While most of the studies have shown promising results, they have disadvantages and show room for improvement. One of the disadvantages is that the studies aim to detect and count all the paddy seedlings to determine planting density. The defective paddy seedlings’ locations are not pointed out to help farmers during the sowing process. In this work we aimed to explore several deep convolutional neural networks (DCNN) models to determine which one performs the best for defective paddy seedling detection using aerial imagery. Thus, we evaluated the accuracy, robustness, and inference latency of one- and two-stage pretrained object detectors combined with state-of-the-art feature extractors such as EfficientNet, ResNet50, and MobilenetV2 as a backbone. We also investigated the effect of transfer learning with fine-tuning on the performance of the aforementioned pretrained models. Experimental results showed that our proposed methods were capable of detecting the defective paddy rice seedlings with the highest precision and an F1-Score of 0.83 and 0.77, respectively, using a one-stage pretrained object detector called EfficientDet-D1 EficientNet.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrew P. Creagh ◽  
Florian Lipsmeier ◽  
Michael Lindemann ◽  
Maarten De Vos

AbstractThe emergence of digital technologies such as smartphones in healthcare applications have demonstrated the possibility of developing rich, continuous, and objective measures of multiple sclerosis (MS) disability that can be administered remotely and out-of-clinic. Deep Convolutional Neural Networks (DCNN) may capture a richer representation of healthy and MS-related ambulatory characteristics from the raw smartphone-based inertial sensor data than standard feature-based methodologies. To overcome the typical limitations associated with remotely generated health data, such as low subject numbers, sparsity, and heterogeneous data, a transfer learning (TL) model from similar large open-source datasets was proposed. Our TL framework leveraged the ambulatory information learned on human activity recognition (HAR) tasks collected from wearable smartphone sensor data. It was demonstrated that fine-tuning TL DCNN HAR models towards MS disease recognition tasks outperformed previous Support Vector Machine (SVM) feature-based methods, as well as DCNN models trained end-to-end, by upwards of 8–15%. A lack of transparency of “black-box” deep networks remains one of the largest stumbling blocks to the wider acceptance of deep learning for clinical applications. Ensuing work therefore aimed to visualise DCNN decisions attributed by relevance heatmaps using Layer-Wise Relevance Propagation (LRP). Through the LRP framework, the patterns captured from smartphone-based inertial sensor data that were reflective of those who are healthy versus people with MS (PwMS) could begin to be established and understood. Interpretations suggested that cadence-based measures, gait speed, and ambulation-related signal perturbations were distinct characteristics that distinguished MS disability from healthy participants. Robust and interpretable outcomes, generated from high-frequency out-of-clinic assessments, could greatly augment the current in-clinic assessment picture for PwMS, to inform better disease management techniques, and enable the development of better therapeutic interventions.


Data ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 28 ◽  
Author(s):  
Kasthurirangan Gopalakrishnan

Deep learning, more specifically deep convolutional neural networks, is fast becoming a popular choice for computer vision-based automated pavement distress detection. While pavement image analysis has been extensively researched over the past three decades or so, recent ground-breaking achievements of deep learning algorithms in the areas of machine translation, speech recognition, and computer vision has sparked interest in the application of deep learning to automated detection of distresses in pavement images. This paper provides a narrative review of recently published studies in this field, highlighting the current achievements and challenges. A comparison of the deep learning software frameworks, network architecture, hyper-parameters employed by each study, and crack detection performance is provided, which is expected to provide a good foundation for driving further research on this important topic in the context of smart pavement or asset management systems. The review concludes with potential avenues for future research; especially in the application of deep learning to not only detect, but also characterize the type, extent, and severity of distresses from 2D and 3D pavement images.


2020 ◽  
Vol 10 (4) ◽  
pp. 213 ◽  
Author(s):  
Ki-Sun Lee ◽  
Jae Young Kim ◽  
Eun-tae Jeon ◽  
Won Suk Choi ◽  
Nan Hee Kim ◽  
...  

According to recent studies, patients with COVID-19 have different feature characteristics on chest X-ray (CXR) than those with other lung diseases. This study aimed at evaluating the layer depths and degree of fine-tuning on transfer learning with a deep convolutional neural network (CNN)-based COVID-19 screening in CXR to identify efficient transfer learning strategies. The CXR images used in this study were collected from publicly available repositories, and the collected images were classified into three classes: COVID-19, pneumonia, and normal. To evaluate the effect of layer depths of the same CNN architecture, CNNs called VGG-16 and VGG-19 were used as backbone networks. Then, each backbone network was trained with different degrees of fine-tuning and comparatively evaluated. The experimental results showed the highest AUC value to be 0.950 concerning COVID-19 classification in the experimental group of a fine-tuned with only 2/5 blocks of the VGG16 backbone network. In conclusion, in the classification of medical images with a limited number of data, a deeper layer depth may not guarantee better results. In addition, even if the same pre-trained CNN architecture is used, an appropriate degree of fine-tuning can help to build an efficient deep learning model.


2019 ◽  
Vol 8 (6) ◽  
pp. 258 ◽  
Author(s):  
Yu Feng ◽  
Frank Thiemann ◽  
Monika Sester

Cartographic generalization is a problem, which poses interesting challenges to automation. Whereas plenty of algorithms have been developed for the different sub-problems of generalization (e.g., simplification, displacement, aggregation), there are still cases, which are not generalized adequately or in a satisfactory way. The main problem is the interplay between different operators. In those cases the human operator is the benchmark, who is able to design an aesthetic and correct representation of the physical reality. Deep learning methods have shown tremendous success for interpretation problems for which algorithmic methods have deficits. A prominent example is the classification and interpretation of images, where deep learning approaches outperform traditional computer vision methods. In both domains-computer vision and cartography-humans are able to produce good solutions. A prerequisite for the application of deep learning is the availability of many representative training examples for the situation to be learned. As this is given in cartography (there are many existing map series), the idea in this paper is to employ deep convolutional neural networks (DCNNs) for cartographic generalizations tasks, especially for the task of building generalization. Three network architectures, namely U-net, residual U-net and generative adversarial network (GAN), are evaluated both quantitatively and qualitatively in this paper. They are compared based on their performance on this task at target map scales 1:10,000, 1:15,000 and 1:25,000, respectively. The results indicate that deep learning models can successfully learn cartographic generalization operations in one single model in an implicit way. The residual U-net outperforms the others and achieved the best generalization performance.


2020 ◽  
Vol 70 (2) ◽  
pp. 234-238
Author(s):  
K.S. Imanbaev ◽  

Currently, deep learning of neural networks is one of the most popular methods for speech recognition, natural language processing, and computer vision. The article reviews the history of deep learning of neural networks and the current state in General. We consider algorithms for training neural networks used for deep training of neural networks, followed by fine-tuning using the method of back propagation of errors. Neural networks with large numbers of hidden layers, frequently occurring and disappearing gradients are very difficult to train. In this paper, we consider methods that successfully implement training of neural networks with large numbers of layers (more than one hundred) and vanishing gradients. A review of well-known libraries used for successful deep learning of neural networks is conducted.


Author(s):  
Ahmad Heidary-Sharifabad ◽  
Mohsen Sardari Zarchi ◽  
Sima Emadi ◽  
Gholamreza Zarei

The Chenopodiaceae species are ecologically and financially important, and play a significant role in biodiversity around the world. Biodiversity protection is critical for the survival and sustainability of each ecosystem and since plant species recognition in their natural habitats is the first process in plant diversity protection, an automatic species classification in the wild would greatly help the species analysis and consequently biodiversity protection on earth. Computer vision approaches can be used for automatic species analysis. Modern computer vision approaches are based on deep learning techniques. A standard dataset is essential in order to perform a deep learning algorithm. Hence, the main goal of this research is to provide a standard dataset of Chenopodiaceae images. This dataset is called ACHENY and contains 27030 images of 30 Chenopodiaceae species in their natural habitats. The other goal of this study is to investigate the applicability of ACHENY dataset by using deep learning models. Therefore, two novel deep learning models based on ACHENY dataset are introduced: First, a lightweight deep model which is trained from scratch and is designed innovatively to be agile and fast. Second, a model based on the EfficientNet-B1 architecture, which is pre-trained on ImageNet and is fine-tuned on ACHENY. The experimental results show that the two proposed models can do Chenopodiaceae fine-grained species recognition with promising accuracy. To evaluate our models, their performance was compared with the well-known VGG-16 model after fine-tuning it on ACHENY. Both VGG-16 and our first model achieved about 80% accuracy while the size of VGG-16 is about 16[Formula: see text] larger than the first model. Our second model has an accuracy of about 90% and outperforms the other models where its number of parameters is 5[Formula: see text] than the first model but it is still about one-third of the VGG-16 parameters.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Emre Kiyak ◽  
Gulay Unal

Purpose The paper aims to address the tracking algorithm based on deep learning and four deep learning tracking models developed. They compared with each other to prevent collision and to obtain target tracking in autonomous aircraft. Design/methodology/approach First, to follow the visual target, the detection methods were used and then the tracking methods were examined. Here, four models (deep convolutional neural networks (DCNN), deep convolutional neural networks with fine-tuning (DCNNFN), transfer learning with deep convolutional neural network (TLDCNN) and fine-tuning deep convolutional neural network with transfer learning (FNDCNNTL)) were developed. Findings The training time of DCNN took 9 min 33 s, while the accuracy percentage was calculated as 84%. In DCNNFN, the training time of the network was calculated as 4 min 26 s and the accuracy percentage was 91%. The training of TLDCNN) took 34 min and 49 s and the accuracy percentage was calculated as 95%. With FNDCNNTL, the training time of the network was calculated as 34 min 33 s and the accuracy percentage was nearly 100%. Originality/value Compared to the results in the literature ranging from 89.4% to 95.6%, using FNDCNNTL, better results were found in the paper.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 564 ◽  
Author(s):  
Thanh Vo ◽  
Trang Nguyen ◽  
C. Le

Race recognition (RR), which has many applications such as in surveillance systems, image/video understanding, analysis, etc., is a difficult problem to solve completely. To contribute towards solving that problem, this article investigates using a deep learning model. An efficient Race Recognition Framework (RRF) is proposed that includes information collector (IC), face detection and preprocessing (FD&P), and RR modules. For the RR module, this study proposes two independent models. The first model is RR using a deep convolutional neural network (CNN) (the RR-CNN model). The second model (the RR-VGG model) is a fine-tuning model for RR based on VGG, the famous trained model for object recognition. In order to examine the performance of our proposed framework, we perform an experiment on our dataset named VNFaces, composed specifically of images collected from Facebook pages of Vietnamese people, to compare the accuracy between RR-CNN and RR-VGG. The experimental results show that for the VNFaces dataset, the RR-VGG model with augmented input images yields the best accuracy at 88.87% while RR-CNN, an independent and lightweight model, yields 88.64% accuracy. The extension experiments conducted prove that our proposed models could be applied to other race dataset problems such as Japanese, Chinese, or Brazilian with over 90% accuracy; the fine-tuning RR-VGG model achieved the best accuracy and is recommended for most scenarios.


Author(s):  
Ramaprasad Poojary ◽  
Roma Raina ◽  
Amit Kumar Mondal

<span id="docs-internal-guid-cdb76bbb-7fff-978d-961c-e21c41807064"><span>During the last few years, deep learning achieved remarkable results in the field of machine learning when used for computer vision tasks. Among many of its architectures, deep neural network-based architecture known as convolutional neural networks are recently used widely for image detection and classification. Although it is a great tool for computer vision tasks, it demands a large amount of training data to yield high performance. In this paper, the data augmentation method is proposed to overcome the challenges faced due to a lack of insufficient training data. To analyze the effect of data augmentation, the proposed method uses two convolutional neural network architectures. To minimize the training time without compromising accuracy, models are built by fine-tuning pre-trained networks VGG16 and ResNet50. To evaluate the performance of the models, loss functions and accuracies are used. Proposed models are constructed using Keras deep learning framework and models are trained on a custom dataset created from Kaggle CAT vs DOG database. Experimental results showed that both the models achieved better test accuracy when data augmentation is employed, and model constructed using ResNet50 outperformed VGG16 based model with a test accuracy of 90% with data augmentation &amp; 82% without data augmentation.</span></span>


Author(s):  
Monika Arora ◽  
Parthasarathi Mangipudi

Nitrosamine is a carcinogenic chemical used as a preservative in red meat whose identification is an ordeal. This paper presents a computer vision-based non-destructive method for identifying quality disparities between preservative treated and untreated (control) red meat. To access the discrepancy in the quality of red meat, both traditional machine learning and deep learning-based methods have been used. Support vector machine (SVM) classifier and artificial neural network (ANN) models have been used to detect the presence of nitrosamine in test samples. The paper also made use of different pre-trained deep convolutional neural networks (DCNN) with transfer learning approach such as ResNet-34, ResNet-50, ResNet-101, VGG-16, VGG-19, AlexNet and MobileNetv2 to examine the presence of nitrosamine in the food samples. While the ANN classifier performed better in comparison to the SVM classifier, the highest testing accuracy and F1-score were obtained using the deep learning model, ResNet-101 with 95.45% and 96.54%, respectively. The experimental results demonstrate an improved performance in comparison to the existing methods; indicating the feasibility of the proposed work for food quality control in real-time applications.


Sign in / Sign up

Export Citation Format

Share Document