Performances of membrane bioreactor technology for treating domestic wastewater operated at different sludge retention time

2022 ◽  
pp. 107-122
Author(s):  
Khac-Uan Do ◽  
Xuan-Quang Chu
2006 ◽  
Vol 53 (11) ◽  
pp. 269-276 ◽  
Author(s):  
C.T. Hay ◽  
D.D. Sun ◽  
S.L. Khor ◽  
J.O. Leckie

A high strength industrial wastewater was treated using a pilot scale submerged membrane bioreactor (MBR) at a sludge retention time (SRT) of 200 d. The MBR was operated at a high sludge concentration of 20 g/L and a low F/M ratio of 0.11 during 300 d of operation. It was found that the MBR could achieve COD and TOC overall removal efficiencies at more than 99 and 98% TN removal. The turbidity of the permeate was consistently in the range of 0.123 to 0.136 NTU and colour254 absorbance readings varied from 0.0912 to 0.0962 a.u. cm−1. The sludge concentration was inversely proportional to the hydraulic retention time (HRT), yielded excellent organic removal and extremely low sludge production (0.0016 kgVSS/day).


2018 ◽  
Vol 53 ◽  
pp. 04039
Author(s):  
Xinyue Jiang ◽  
Bin Xu

The previously assumed “inert” organics measured by respirometric method has been reported to be hydrolysable under long sludge retention time (SRT) configuration such as membrane bioreactor(MBR). The sludge production under long SRT has also shown to be lower than the standard activated sludge model (ASM) prediction. The hydrolysis of “inert” organics can provide the extra carbon source for denitrification. The current modeling approach has not yet included this aspect. In this study, a modified ASM3 was developed to account for the hydrolysis of “inert” organics and subsequent effect on the denitrification process under long SRT.


2010 ◽  
Vol 113-116 ◽  
pp. 1424-1428
Author(s):  
Yu Tian ◽  
Lin Chen ◽  
Xin Ying Su ◽  
Chu Qing Cao

Recent trend for membrane bioreactor (MBR) operation was to apply a low sludge retention time (SRT) to decrease the fouling propensity and simplify the overall maintenance. However, the correct control and operation of MBRs under low SRT conditions were not well-established. In this study, modeling of MBR system for municipal wastewater treatment was evaluated using hybrid Activated Sludge Models 3 (ASM3), which helped in determining the control and operating strategies. The experiment-based, manual trial-and-error approach used to calibrate the hybrid ASM3 was verified to be useful for MBR modeling at 30 d sludge retention time (SRT). Furthermore, the consistency relationships among carbon oxygen demanded (COD), soluble microbial products (SMP) and mixed liquor suspended solids (MLSS) were established in the process of modeling, implying that the accurate simulation of MLSS were the prerequisites for the COD and SMP prediction.


2006 ◽  
Vol 53 (6) ◽  
pp. 7-13 ◽  
Author(s):  
H.Y. Ng ◽  
T.W. Tan ◽  
S.L. Ong ◽  
C.A. Toh ◽  
Z.P. Loo

In this study, four similar bench-scale submerged Anoxic/Oxic Membrane Bioreactors (MBR) were used simultaneously to investigate the effects of solids retention time (SRT) on organic and nitrogen removal in MBR for treating domestic wastewater. COD removal efficiencies in all reactors were consistently above 94% under steady state conditions. Complete conversion of NH4+-N to NO3--N was readily achieved over a feed NH4+-N concentration range of 30 to 50 mg/L. It was also observed that SRT did not significantly affect the nitrification in the MBR systems investigated. The average denitrification efficiencies for the 3, 5, 10 and 20 days SRT operations were 43.9, 32.6, 47.5 and 66.5%, respectively. In general, the average effluent nitrogen concentrations, which were mainly nitrate, were about 22.2, 27.6, 21.7 and 13.9 mg/L for the 3, 5, 10 and 20 days SRT systems, respectively. The rate of membrane fouling at 3 days SRT operation was more rapid than that observed at 5 days SRT. No fouling was noted in the 10 days and 20 days SRT systems during the entire period of study.


Sign in / Sign up

Export Citation Format

Share Document