Preliminary testing of safety conditions of high voltage substations located in urban areas

2022 ◽  
pp. 129-150
Author(s):  
Ljubivoje M. Popović
Electricity ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 285-299
Author(s):  
Andreas Sumper ◽  
Oriol Boix-Aragones ◽  
Joan Rull-Duran ◽  
Joan Amat-Algaba ◽  
Joachim Wagner

This article proposes a novel methodology to evaluate the visual impact of high-voltage lines in urban areas based on photographic images. The use of photographs allows for calculating the overall aesthetic impact while eliminating the subjective factors of the observer. To apply the proposed methodology based on photographs, the impact of the position and angle where the photograph was taken was analyzed, and a sensibility analysis was carried out. Moreover, it was applied to an application case, and a comparison with results from a previous study of a visual impact was performed. The methodology shows good performance and a better resolution of the indicator.


Energy Policy ◽  
2010 ◽  
Vol 38 (10) ◽  
pp. 6036-6044 ◽  
Author(s):  
Andreas Sumper ◽  
Oriol Boix-Aragonès ◽  
Roberto Villafáfila-Robles ◽  
Joan Bergas-Jané ◽  
Rodrigo Ramírez-Pisco
Keyword(s):  

2011 ◽  
Vol 374-377 ◽  
pp. 8-13
Author(s):  
Di Lu ◽  
Jian Xin Wang

With the development of China's power industry, many cities had renovated, expanded electricity power network ,110、220 kV and above the high voltage overhead transmission lines all around the urban areas and residential areas. As the electromagnetic radiation of high-voltage transmission lines inevitability pollute on urban environment, according to the Investigation, monitoring and analysis of high voltage, based on national standard of electromagnetic radiation, this paper proposed the controlling measures and recommendations of electromagnetic radiation. Therefore, the research that the electromagnetic radiation impact on the environmental has a very high value and academic significance.


Author(s):  
L. D. Ackerman ◽  
S. H. Y. Wei

Mature human dental enamel has presented investigators with several difficulties in ultramicrotomy of specimens for electron microscopy due to its high degree of mineralization. This study explores the possibility of combining ion-milling and high voltage electron microscopy as a means of circumventing the problems of ultramicrotomy.A longitudinal section of an extracted human third molar was ground to a thickness of about 30 um and polarized light micrographs were taken. The specimen was attached to a single hole grid and thinned by argon-ion bombardment at 15° incidence while rotating at 15 rpm. The beam current in each of two guns was 50 μA with an accelerating voltage of 4 kV. A 20 nm carbon coating was evaporated onto the specimen to prevent an electron charge from building up during electron microscopy.


Author(s):  
Lee D. Peachey ◽  
Clara Franzini-Armstrong

The effective study of biological tissues in thick slices of embedded material by high voltage electron microscopy (HVEM) requires highly selective staining of those structures to be visualized so that they are not hidden or obscured by other structures in the image. A tilt pair of micrographs with subsequent stereoscopic viewing can be an important aid in three-dimensional visualization of these images, once an appropriate stain has been found. The peroxidase reaction has been used for this purpose in visualizing the T-system (transverse tubular system) of frog skeletal muscle by HVEM (1). We have found infiltration with lanthanum hydroxide to be particularly useful for three-dimensional visualization of certain aspects of the structure of the T- system in skeletal muscles of the frog. Specifically, lanthanum more completely fills the lumen of the tubules and is denser than the peroxidase reaction product.


Author(s):  
L. E. Thomas ◽  
J. S. Lally ◽  
R. M. Fisher

In addition to improved penetration at high voltage, the characteristics of HVEM images of crystalline materials are changed markedly as a result of many-beam excitation effects. This leads to changes in optimum imaging conditions for dislocations, planar faults, precipitates and other features.Resolution - Because of longer focal lengths and correspondingly larger aberrations, the usual instrument resolution parameter, CS174 λ 374 changes by only a factor of 2 from 100 kV to 1 MV. Since 90% of this change occurs below 500 kV any improvement in “classical” resolution in the MVEM is insignificant. However, as is widely recognized, an improvement in resolution for “thick” specimens (i.e. more than 1000 Å) due to reduced chromatic aberration is very large.


Author(s):  
T. Mukai ◽  
T. E. Mitchell

Radiation-induced homogeneous precipitation in Ni-Be alloys was recently observed by high voltage electron microscopy. A coupling of interstitial flux with solute Be atoms is responsible for the precipitation. The present investigation further shows that precipitation is also induced at thin foil surfaces by electron irradiation under a high vacuum.


Author(s):  
J. S. Lally ◽  
R. Evans

One of the instrumental factors often limiting the resolution of the electron microscope is image defocussing due to changes in accelerating voltage or objective lens current. This factor is particularly important in high voltage electron microscopes both because of the higher voltages and lens currents required but also because of the inherently longer focal lengths, i.e. 6 mm in contrast to 1.5-2.2 mm for modern short focal length objectives.The usual practice in commercial electron microscopes is to design separately stabilized accelerating voltage and lens supplies. In this case chromatic aberration in the image is caused by the random and independent fluctuations of both the high voltage and objective lens current.


Sign in / Sign up

Export Citation Format

Share Document