instrument resolution
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 4)

H-INDEX

6
(FIVE YEARS 1)

2019 ◽  
Vol 12 (9) ◽  
pp. 5071-5086 ◽  
Author(s):  
Penny M. Rowe ◽  
Christopher J. Cox ◽  
Steven Neshyba ◽  
Von P. Walden

Abstract. Improvements to climate model results in polar regions require improved knowledge of cloud properties. Surface-based infrared (IR) radiance spectrometers have been used to retrieve cloud properties in polar regions, but measurements are sparse. Reductions in cost and power requirements to allow more widespread measurements could be aided by reducing instrument resolution. Here we explore the effects of errors and instrument resolution on cloud property retrievals from downwelling IR radiances for resolutions of 0.1 to 20 cm−1. Retrievals are tested on 336 radiance simulations characteristic of the Arctic, including mixed-phase, vertically inhomogeneous, and liquid-topped clouds and a variety of ice habits. Retrieval accuracy is found to be unaffected by resolution from 0.1 to 4 cm−1, after which it decreases slightly. When cloud heights are retrieved, errors in retrieved cloud optical depth (COD) and ice fraction are considerably smaller for clouds with bases below 2 km than for higher clouds. For example, at a resolution of 4 cm−1, with errors imposed (noise and radiation bias of 0.2 mW/(m2 sr cm−1) and biases in temperature of 0.2 K and in water vapor of −3 %), using retrieved cloud heights, root-mean-square errors decrease from 1.1 to 0.15 for COD, 0.3 to 0.18 for ice fraction (fice), and 10 to 7 µm for ice effective radius (errors remain at 2 µm for liquid effective radius). These results indicate that a moderately low-resolution, surface-based IR spectrometer could provide cloud property retrievals with accuracy comparable to existing higher-resolution instruments and that such an instrument would be particularly useful for low-level clouds.


2019 ◽  
Author(s):  
Penny M. Rowe ◽  
Christopher J. Cox ◽  
Steven Neshyba ◽  
Von P. Walden

Abstract. Improvements to climate model results in polar regions require improved knowledge of cloud microphysical properties. Surface-based infrared radiance spectrometers have been used to retrieve cloud microphysical properties in polar regions, but measurements are sparse. Reductions in cost and power requirements to allow more widespread measurements could be aided by reducing instrument resolution. Here we explore the effect of errors and instrument resolution on cloud microphysical property retrievals from downwelling infrared radiances for resolutions of 0.1 to 8 cm−1. Retrievals are tested on 331 radiance simulations characteristic of the Arctic, including mixed-phase, vertically inhomogeneous, and liquid-topped clouds and a variety of ice habits. Results indicate that measurement biases lead to biases in retrieved properties that are not represented by the retrieval error covariance matrix. Retrieval errors are high if mixed-phase is assumed throughout liquid-topped ice clouds. Errors due to assuming ice habit is spherical are progressively larger for solid columns, plates, and hollow bullet rosettes. Using retrieved cloud heights, particularly when errors are imposed, increases retrieval errors but decreases sensitivity to incorrect ice habits and vertical variation. Results indicate that retrieval accuracy is unaffected by resolution from 0.1 to 2 cm−1, after which it decreases only slightly. At a resolution of 4 cm−1, for typical errors expected in temperature (0.2 K) and water vapour (3 %), and assuming radiation bias and noise of 0.2 mW/(m2 sr cm−1), using retrieved cloud heights, error estimates are 0.1 ± 0.6 for optical depth, 0.0 ± 0.3 for ice fraction, 0 &plusmnl 2 μm for effective radius of liquid, and 2 ± 2 μm for effective radius of ice. These results indicate that a moderately low resolution, portable, surface-based infrared spectrometer could provide microphysical properties to help constrain climate models.


2019 ◽  
Vol 5 (3) ◽  
pp. eaaw4367
Author(s):  
M. E. Manley ◽  
D. L. Abernathy ◽  
A. D. Christianson ◽  
J. W. Lynn

Gehring et al. argue that a splitting observed by us in the transverse acoustic (TA) phonon in the relaxor ferroelectric Pb[(Mg1/3Nb2/3)1−xTix]O3 with x = 0.30 (PMN-30PT) is caused by a combination of inelastic-elastic multiple scattering processes called ghostons. Their argument is motivated by differences observed between their measurements made on a triple-axis spectrometer and our measurements on a time-of-flight spectrometer. We show that the differences can be explained by differences in the instrument resolution functions. We demonstrate that the multiple scattering conditions proposed by Gehring et al. do not work for our scattering geometry. We also show that, when a ghoston is present, it is too weak to detect and therefore cannot explain the splitting. Last, this phonon splitting is just one part of the argument, and the overall conclusion of the original paper is supported by other results.


2018 ◽  
Vol 25 (4) ◽  
pp. 1030-1035 ◽  
Author(s):  
Thomas Gog ◽  
Diego M. Casa ◽  
Jonathan Knopp ◽  
Jungho Kim ◽  
Mary H. Upton ◽  
...  

In the context of a novel, high-resolution resonant inelastic X-ray scattering spectrometer, a flat-crystal-based quartz analyzer system has recently been demonstrated to provide an unprecedented intrinsic-energy resolution of 3.9 meV at the Ir L 3 absorption edge (11.215 keV) [Kim et al. (2018) Sci. Rep. 8, 1958]. However, the overall instrument resolution was limited to 9.7 meV because of an 8.9 meV incident band pass, generated by the available high-resolution four-bounce Si(844) monochromator. In order to better match the potent resolving power of the novel analyzer with the energy band pass of the incident beam, a quartz(309)-based double-bounce, high-resolution monochromator was designed and implemented, expected to yield an overall instrument resolution of 6.0 meV. The choice of lower-symmetry quartz is very attractive because of its wealth of suitable near-backscattering reflections. However, it was found that during room-temperature operation typical levels of incident power, barely affecting the Si monochromator, caused substantial thermal distortions in the first crystal of the quartz monochromator, rendering it practically unusable. Finite-element analyses and heat-flow analyses corroborate this finding. As a high-flux, lower resolution (15.8 meV) alternative, a two-bounce sapphire(078) version was also tested and found to be less affected than quartz, but notably more than silicon.


2013 ◽  
Vol 82 (Suppl.A) ◽  
pp. SA037 ◽  
Author(s):  
Anette Vickery ◽  
Linda Udby ◽  
Nicoló Violini ◽  
Jörg Voigt ◽  
Pascale P. Deen ◽  
...  

Metrologia ◽  
2007 ◽  
Vol 44 (6) ◽  
pp. 476-483 ◽  
Author(s):  
Jan Hannig ◽  
Hari K Iyer ◽  
C M Wang

Sign in / Sign up

Export Citation Format

Share Document