Quaternary Faulting Along the Caribbean–North American Plate Boundary in Central America

Author(s):  
DAVID P. SCHWARTZ ◽  
LLOYD S. CLUFF ◽  
THOMAS W. DONNELLY
1979 ◽  
Vol 52 (1-4) ◽  
pp. 431-445 ◽  
Author(s):  
David P. Schwartz ◽  
Lloyd S. Cluff ◽  
Thomas W. Donnelly

2013 ◽  
Vol 184 (1-2) ◽  
pp. 67-76 ◽  
Author(s):  
Hallie E. Meighan ◽  
Jay Pulliam

Abstract Active plate boundaries in the Caribbean form a complex tectonic environment that includes transform and subduction zones. The Caribbean-North American plate boundary is one such active margin, where subduction transitions from arc- to oblique-type off the northeast coast of Puerto Rico. Understanding mantle flow in this region will not only help determine the nature of tectonic activity and mantle dynamics that control these margins, but will also aid our understanding of the fate of subducting lithosphere. The existence of tears, windows, and gaps in subducting slabs has been proposed at various locations around the world but few have been confirmed. Since mantle flow and crustal deformation are believed to produce seismic anisotropy in the asthenosphere and lithosphere, searching for changes in, for example, SKS splitting parameters can help identify locations at which subducting slabs have been disrupted. Several lines of evidence support the notion of a slab tear within the subducting North American plate at this transition zone, including the counter-clockwise rotation of the Puerto Rico microplate over the past ~10 Ma, clusters of small seismic events, and trench collapse initiating ~3.3 m.y. Here we present results from a detailed investigation of seismic anisotropy from 28 stations across six networks in the Northeast Caribbean that support the hypothesis of a significant slab gap in the vicinity of the U.S. and British Virgin islands. A regional synthesis of our results reveals fast shear wave polarizations that are generally oriented parallel to the plate boundary with intermediate to high SH-SV delay times. For example, polarization directions are oriented roughly NE-SW along the bulk of the Lesser Antilles, E-W along the Puerto Rico trench and the northern Lesser Antilles, and NW-SE beneath Hispaniola. Beneath the U.S. and British Virgin Islands, however, the fast polarization direction differs markedly from the regional pattern, becoming almost perpendicular to the plate boundary. Stations on Anegada, British Virgin islands and St. Croix, U.S. Virgin islands show a fast polarization direction that is oriented nearly NNE-SSW and smaller delay times than surrounding stations. These results suggest that mantle flow is redirected NE-SW at this location through a gap in the subducted lithosphere of the North American plate.


2019 ◽  
Author(s):  
Richard Styron ◽  
Julio García-Pelaez ◽  
Marco Pagani

Abstract. A database of ~250 active fault traces in the Caribbean and Central American regions has been assembled to characterize the seismic hazard and tectonics of the area, as part of the GEM Foundation's Caribbean and Central American Risk Assesment (CCARA) project. The dataset is available in many vector GIS formats, and contains fault trace locations as well as attributes describing fault geometry and kinematics, slip rates, data quality and uncertainty, and other metadata as available. The data is public and open-source (available at https://github.com/GEMScienceTools/central_am_carib_faults), will be updated progressively as new data is available, and is open to community contribution. The active fault data show deformation in the region to be centered around the margins of the Caribbean plate. Northern Central America has sinistral and reverse faults north of the sinistral Motagua-Polochic Fault Zone, which accommodates sinistral Caribbean-North American relative motion. The Central American Highlands extend east-west along a broad array of normal faults, bound by the Motagua-Polochic Fault Zone in the north and dextral faulting in the southwest between the Caribbean plate and the Central American forearc. Faulting in southern Central America is complicated, with trench-parallel reverse and sinistral faults. The northern Caribbean-North American plate boundary is sinistral offshore of Central America, with transpressive stepovers through Jamaica, southern Cuba and Hispaniola. Farther east, deformation becomes more contractional closer to the Lesser Antilles subduction zone, with minor extension and sinistral shear throughout the upper plate, accommodating oblique convergence of the Caribbean and North American plates.


2020 ◽  
Vol 20 (3) ◽  
pp. 831-857 ◽  
Author(s):  
Richard Styron ◽  
Julio García-Pelaez ◽  
Marco Pagani

Abstract. A database of ∼250 active fault traces in the Caribbean and Central American regions has been assembled to characterize the seismic hazard and tectonics of the area, as part of the Global Earthquake Model (GEM) Foundation's Caribbean and Central American Risk Assessment (CCARA) project. The dataset is available in many vector GIS formats and contains fault trace locations as well as attributes describing fault geometry and kinematics, slip rates, data quality and uncertainty, and other metadata as available. The database is public and open source (available at: https://github.com/GEMScienceTools/central_am_carib_faults, last access: 23 March 2020), will be updated progressively as new data become available, and is open to community contribution. The active fault data show deformation in the region to be centered around the margins of the Caribbean plate. Northern Central America has sinistral and reverse faults north of the sinistral Motagua–Polochic fault zone, which accommodates sinistral Caribbean–North American relative motion. The Central Highlands in Central America extend east–west along a broad array of normal faults, bound by the Motagua–Polochic fault zone in the north and trench-parallel dextral faulting in the southwest between the Caribbean plate and the Central American forearc. Faulting in southern Central America is complicated, with trench-parallel reverse and sinistral faults. The northern Caribbean–North American plate boundary is sinistral off the shore of Central America, with transpressive stepovers through Jamaica, southern Cuba and Hispaniola. Farther east, deformation becomes more contractional closer to the Lesser Antilles subduction zone, with minor extension and sinistral shear throughout the upper plate, accommodating oblique convergence of the Caribbean and North American plates.


2015 ◽  
Vol 3 (3) ◽  
pp. 941-1003 ◽  
Author(s):  
L. Andreani ◽  
R. Gloaguen

Abstract. We use a geomorphic approach in order to unravel the recent evolution of the diffuse triple junction between the North American, Caribbean, and Cocos plates in northern Central America. The complex tectonic setting produced an intricate pattern of landscapes that we try to systemize using remote sensing tectonic geomorphology and available geological and geophysical data. We classify regions with specific relief characteristics and highlight uplifted relict landscapes in northern Central America. We also analyze the drainage network from the Sierra Madre de Chiapas and Maya Mountains in order to extract information about potential vertical displacements. Our results suggest that most of the landscapes of the Sierra Madre de Chiapas and Maya Mountains are in transient stage. Topographic profiles and morphometric maps highlight elevated relict surfaces that are characterized by a low amplitude relief. The river longitudinal profiles display upper reaches witnessing these relict landscapes while lower segments characterized by multiple knickpoints, that adjust to new base-level conditions. These results backed by published GPS and seismotectonic data allow us to refine and extend existing geodynamic models of the triple junction. Relict landscapes are delimited by faults and thus result from a tectonic control. The topography of the Sierra Madre de Chiapas evolved as the result of (1) the inland migration of deformation related to the coupling between the Chiapas Massif and the Cocos fore-arc sliver, and (2) the compression along the northern tip of the Central America Volcanic Arc. Although most of the shortening between the Cocos fore-arc sliver and the North American plate is accommodated within the Sierra de Chiapas and Sierra de los Cuchumatanes, a small part may be still transmitted to the Maya Mountains and the Belize margin through a "rigid" Petén basin.


1988 ◽  
Vol 129 ◽  
pp. 365-366
Author(s):  
P. M. Kroger ◽  
G. A. Lyzenga ◽  
K. S. Wallace ◽  
J. M. Davidson

The problem of understanding the deformation occurring along the Pacific-North American plate boundary in the western United States depends upon understanding the forces which drive the plates in this region. One of the primary sources of our knowledge concerning these forces lies in their manifestation as relative displacements which occur throughout the broad zone of deformation surrounding the San Andreas fault system. It is information concerning the spatial and temporal distribution of these motions which will be of greatest benefit in helping to determine which of several possible mechanisms is responsible for driving contemporary plate motions in this region.


Sign in / Sign up

Export Citation Format

Share Document