Low-Input Sustainable Agriculture Using Ecological Management Practices

Author(s):  
DAVID PIMENTEL ◽  
THOMAS W. CULLINEY ◽  
IMO W. BUTTLER ◽  
DOUGLAS J. REINEMANN ◽  
KENNETH B. BECKMAN
1989 ◽  
Vol 27 (1-4) ◽  
pp. 3-24 ◽  
Author(s):  
David Pimentel ◽  
Thomas W. Culliney ◽  
Imo W. Buttler ◽  
Douglas J. Reinemann ◽  
Kenneth B. Beckman

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
E. del-Val ◽  
E. Ramírez ◽  
M. Astier

Abstract Background Animal communities are vulnerable to agricultural practices. Intensive farming considerably reduces overall arthropod diversity, but not necessarily pest abundance. Natural control of herbivores in agroecosystems is accomplished by predators and parasitoids, but in intensified agricultural regimes, the chemical control used to reduce pest abundances also affects pests’ natural enemies. To achieve more sustainable agriculture, there is a need to better understand the susceptibility of predators to conventional management. Methods In order to quantify the arthropod diversity associated with different schemes of agricultural management of maize, we evaluated agricultural fields under two contrasting management regimens in Michoacán, México during the spring–summer cycle of 2011. Arthropod communities were evaluated in plots with conventional high-input versus low-input agriculture in two sites—one rainfed and one with irrigation. The experimental units consisted of twelve 1 ha agricultural plots. To sample arthropods, we used 9 pitfall traps per agricultural plot. Results During the sampling period, we detected a total of 14,315 arthropods belonging to 12 Orders and 253 morphospecies. Arthropod community composition was significantly different between the sites, and in the rain-fed site, we also found differences between management practices. Predators, particularly ants, were more abundant in low-input sites. Herbivory levels were similar in all fields, with an average of 18% of leaf area lost per plant. Conclusions Our results suggest that conventional farming is not reducing herbivore abundances or damage inflicted to plants, but is affecting arthropod predators. We discuss repercussions for sustainable agriculture.


1993 ◽  
Vol 28 (3-5) ◽  
pp. 691-700 ◽  
Author(s):  
J. P. Craig ◽  
R. R. Weil

In December, 1987, the states in the Chesapeake Bay region, along with the federal government, signed an agreement which called for a 40% reduction in nitrogen and phosphorus loadings to the Bay by the year 2000. To accomplish this goal, major reductions in nutrient loadings associated with agricultural management practices were deemed necessary. The objective of this study was to determine if reducing fertilizer inputs to the NT system would result in a reduction in nitrogen contamination of groundwater. In this study, groundwater, soil, and percolate samples were collected from two cropping systems. The first system was a conventional no-till (NT) grain production system with a two-year rotation of corn/winter wheat/double crop soybean. The second system, denoted low-input sustainable agriculture (LISA), produced the same crops using a winter legume and relay-cropped soybeans into standing wheat to reduce nitrogen and herbicide inputs. Nitrate-nitrogen concentrations in groundwater were significantly lower under the LISA system. Over 80% of the NT groundwater samples had NO3-N concentrations greater than 10 mgl-1, compared to only 4% for the LISA cropping system. Significantly lower soil mineral N to a depth of 180 cm was also observed. The NT soil had nearly twice as much mineral N present in the 90-180 cm portion than the LISA cropping system.


Author(s):  
Andrea Ertani ◽  
Paolo Sambo ◽  
Carlo Nicoletto ◽  
Silvia Santagata ◽  
Michela Schiavon ◽  
...  

Plant Disease ◽  
2021 ◽  
Author(s):  
Rebecca Leigh Barocco ◽  
Santosh Sanjel ◽  
Nicholas Steven Dufault ◽  
Charles Barrett ◽  
Benjamin Broughton ◽  
...  

Diverse field characteristics, weather patterns, and management practices can result in variable microclimates. The objective was to relate in-field microclimate conditions with peanut diseases and yield and determine the effect of irrigation and fungicides within these environments. Irrigation did not have a major impact on disease and yield. Stem rot (Athelia rolfsii) and early (Passalora arachidicola) and late (Nothopassalora personata) leaf spot were most affected by changes in environmental patterns across seasons. Average non-treated stem rot was 12.9% in 2017 which dropped considerably in 2018 to 0.2% but emerged again in 2019 to 3.2%. Stem rot incidence varied across the field, and the response to fungicides depended on management zone. Leaf spot defoliation in non-treated plots was severe in 2019 reaching an average of 73% at 126 days after planting but only reached 15% in 2017 and 35% in 2019 at the same stage. A low-input fungicide schedule was able to reduce foliar disease in all zones and seasons, but the microclimatic conditions in the low-lying area favored leaf spot in 2017 and 2018 although not in the dryer 2019 season. Seasonal differences in disease and plant growth affected the level of protection against average yield loss using a standard low-input program which in 2017 (527 kg/ha) was not as great as 2018 (2,235 kg/ha) or 2019 (1,763 kg/ha). Disease prediction models built on dynamic environmental factors in the context of multiple pathogens and natural field conditions could be developed to improve within-season management decisions for more efficient fungicide inputs.


1990 ◽  
Vol 19 (2) ◽  
pp. 90-98 ◽  
Author(s):  
James C. Hanson ◽  
Dale M. Johnson ◽  
Steven E. Peters ◽  
Rhonda R. Janke

A long-term whole-farm analysis compared conventional and low-input farming systems. Data from a nine-year agronomic study at the Rodale Research Farm, Kutztown, Pennsylvania, were used to analyze profitability, liquidity, solvency, and risk on a representative commercial grain farm. Conventional and low-input farms participating in government programs are the most profitable scenarios, followed by conventional and low-input farms not participating in government programs. All farms increased their net worth. The low-input approach is advantageous for risk-averse farmers using a safety-first criterion.


Sign in / Sign up

Export Citation Format

Share Document