scholarly journals Unimolecular reaction mechanisms: the role of reactive intermediates

Author(s):  
Hans-Friedrich Grützmacher
2004 ◽  
Vol 77 (3) ◽  
pp. 512-541 ◽  
Author(s):  
Geert Heideman ◽  
Rabin N. Datta ◽  
Jacques W. M. Noordermeer ◽  
Ben van Baarle

Abstract This review provides relevant background information about the vulcanization process, as well as the chemistry of thiuram- and sulfenamide-accelerated sulfur vulcanization with emphasis on the role of activators, to lay a base for further research. It commences with an introduction of sulfur vulcanization and a summary of the reaction mechanisms as described in literature, followed by the role of activators, particularly ZnO. The various possibilities to reduce ZnO levels in rubber compounding, that have been proposed in literature, are reviewed. A totally different approach to reduce ZnO is described in the paragraphs about the various possible roles of multifunctional additives (MFA) in rubber vulcanization. Another paragraph is dedicated to the role of amines in rubber vulcanization, in order to provide some insight in the underlying chemical mechanisms of MFA systems. Furthermore, an overview of Model Compound Vulcanization (MCV) with respect to different models and activator/accelerator systems is given. In the last part of this review, the various functions of ZnO in rubber are summarized. It clearly reveals that the role of ZnO and zinc compounds is very complex and still deserves further clarification.


1977 ◽  
Vol 145 (4) ◽  
pp. 983-998 ◽  
Author(s):  
S J Klebanoff

Estradiol binds covalently to normal leukocytes during phagocytosis. The binding involves three cell types, neutrophils, eosinophils, and monocytes and at least two reaction mechanisms, one involving the peroxidase of neutrophils and monocytes (myeloperoxidase [MPO]) and possibly the eosinophil peroxidase, and the second involving catalase. Binding is markedly reduced when leukocytes from patients with chronic granulomatous disease (CGD), severe leukocytic glucose 6-phosphate dehydrogenase deficiency, and familial lipochrome histiocytosis are employed and two populations of neutrophils, one which binds estradiol and one which does not, can be demonstrated in the blood of a CGD carrier. Leukocytes from patients with hereditary MPO deficiency also bind estradiol poorly although the defect is not as severe as in CGD. These findings are discussed in relation to the inactivation of estrogens during infection and the possible role of estrogens in neutrophil function.


1989 ◽  
Vol 149 ◽  
Author(s):  
S. Veprek ◽  
M. Heintze ◽  
R. Bayer ◽  
N. Jurčik-Rajman

ABSTRACTWe present new results of kinetic studies of the deposition of high quality a-Si:H which strongly support the reaction mechanism suggested in our earlier papers: 1. SiH4 → SiH2; 2. SiH2 + SiS4 → Si2H6 (SiH2 + Si2H6 → Si3H6); 3. Si2H6 → 2a-Si:H (Si3H8 → 3a-Si:H). The “SiH3 mechanism”, as promoted by several workers, is in contradiction with these experimental facts.The di- and trisilane, which have a much higher reactive sticking coefficient than monosilane, play the role of reactive intermediates which facilitate the heterogeneous decomposition of silicon carrying species at the surface of the growing film. The values of the reactive sticking coefficient of Si2H6 and Si3H8 depend on the surface coverage by chemisorbed hydrogen; they increase with decreasing surface coverage. Under the conditions of the growth of high quality a-Si:H films the reactive sticking coefficient of disilane amounts to 10−4 to 10−2 which is in a good agreement with recent data of other authors.The rate determining step of the growth of high quality a-Si:H films is the desorption of hydrogen from the surface of the growing film. This can be strongly enhanced by ion bombardment at impact energy of <100 eV. In this way, homogeneous, good quality films were deposited at rates up to 1800 Angströms/min, and there is a well justified hope that this rate can be further increased.


Sign in / Sign up

Export Citation Format

Share Document