Polycrystalline Diamond for Infrared Optical Applications Prepared by the Microwave Plasma and Hot Filament Chemical Vapor Deposition Techniques

Author(s):  
C. Willingham ◽  
T. Hartnett ◽  
C. Robinson ◽  
C. Klein
1996 ◽  
Vol 11 (7) ◽  
pp. 1765-1775 ◽  
Author(s):  
James M. Olson ◽  
Michael J. Dawes

Thin diamond film coated WC-Co cutting tool inserts were produced using arc-jet and hot-filament chemical vapor deposition. The diamond films were characterized using SEM, XRD, and Raman spectroscopy to examine crystal structure, fracture mode, thickness, crystalline orientation, diamond quality, and residual stress. The performance of the tools was evaluated by comparing the wear resistance of the materials to brazed polycrystalline diamond-tipped cutting tool inserts (PCD) while machining A390 aluminum (18% silicon). Results from the experiments carried out in this study suggest that the wear resistance of the thin diamond films is primarily related to the grain boundary strength, crystal orientation, and the density of microdefects in the diamond film.


1996 ◽  
Vol 423 ◽  
Author(s):  
S. Mirzakuchaki ◽  
H. Golestanian ◽  
E. J. Charlson ◽  
T. Stacy

AbstractAlthough many researchers have studied boron-doped diamond thin films in the past several years, there have been few reports on the effects of doping CVD-grown diamond films with phosphorous. For this work, polycrystalline diamond thin films were grown by hot filament chemical vapor deposition (HFCVD) on p-type silicon substrates. Phosphorous was introduced into the reaction chamber as an in situ dopant during the growth. The quality and orientation of the diamond thin films were monitored by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Current-voltage (I-V) data as a function of temperature for golddiamond film-silicon-aluminum structures were measured. The activation energy of the phosphorous dopants was calculated to be approximately 0.29 eV.


1994 ◽  
Vol 3 (4-6) ◽  
pp. 618-622 ◽  
Author(s):  
Takashi Sugino ◽  
Kiyoshi Karasutani ◽  
Fumihiro Mano ◽  
Hiroya Kataoka ◽  
Junji Shirafuji ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1199
Author(s):  
Mariusz Dudek ◽  
Adam Rosowski ◽  
Marcin Kozanecki ◽  
Malwina Jaszczak ◽  
Witold Szymański ◽  
...  

Different microstructures were created on the surface of a polycrystalline diamond plate (obtained by microwave plasma-enhanced chemical vapor deposition—MW PECVD process) by use of a nanosecond pulsed DPSS (diode pumped solid state) laser with a 355 nm wavelength and a galvanometer scanning system. Different average powers (5 to 11 W), scanning speeds (50 to 400 mm/s) and scan line spacings (“hatch spacing”) (5 to 20 µm) were applied. The microstructures were then examined using scanning electron microscopy, confocal microscopy and Raman spectroscopy techniques. Microstructures exhibiting excellent geometry were obtained. The precise geometries of the microstructures, exhibiting good perpendicularity, deep channels and smooth surfaces show that the laser microprocessing can be applied in manufacturing diamond microfluidic devices. Raman spectra show small differences depending on the process parameters used. In some cases, the diamond band (at 1332 cm−1) after laser modification of material is only slightly wider and shifted, but with no additional peaks, indicating that the diamond is almost not changed after laser interaction. Some parameters did show that the modification of material had occurred and additional peaks in Raman spectra (typical for low-quality chemical vapor deposition CVD diamond) appeared, indicating the growing disorder of material or manufacturing of the new carbon phase.


2008 ◽  
Vol 136 ◽  
pp. 153-160
Author(s):  
Agung Purniawan ◽  
E. Hamzah ◽  
M.R.M. Toff

Diamond is the hardest material and has high chemical resistant which is one form of carbon. In the present work a study was carried out on polycrystalline diamond coated Si3N4 substrate. The diamond was deposited by Microwave Plasma Assisted Chemical Vapor Deposition (MPACVD) under varying deposition parameters namely CH4 diluted in H2, microwave power and chamber pressure. SEM and AFM are used to investigate the surface morphology and surface roughness. Nucleation phenomena and crystal width were also studied using AFM. Based on SEM investigation it was found that the chamber pressure and %CH4 have more significant effects on nucleation and facet of polycrystalline diamond, In addition microwave power has an effect on the diamond facet that changed from cubic to cauliflower structure. Surface roughness results show that increasing the %CH4 has decreased surface roughness 334.83 to 269.99 nm at 1 to 3% CH4, respectively. Increasing microwave power leads to increase in diamond nucleation and coalescence which lead to less surface roughness. Increasing gas pressure may eliminate Si contamination however it reduces diamond nucleation.


Sign in / Sign up

Export Citation Format

Share Document