Antiadhesin Synthetic Peptide Consensus Sequence Vaccine and Antibody Therapeutic for Pseudomonas Aeruginosa

Author(s):  
DANIEL J. KAO ◽  
ROBERT S. HODGES
2004 ◽  
Vol 186 (20) ◽  
pp. 6983-6998 ◽  
Author(s):  
Aneta A. Bartosik ◽  
Krzysztof Lasocki ◽  
Jolanta Mierzejewska ◽  
Christopher M. Thomas ◽  
Grazyna Jagura-Burdzy

ABSTRACT The par genes of Pseudomonas aeruginosa have been studied to increase the understanding of their mechanism of action and role in the bacterial cell. Key properties of the ParB protein have been identified and are associated with different parts of the protein. The ParB- ParB interaction domain was mapped in vivo and in vitro to the C-terminal 56 amino acids (aa); 7 aa at the C terminus play an important role. The dimerization domain of P. aeruginosa ParB is interchangeable with the dimerization domain of KorB from plasmid RK2 (IncP1 group). The C-terminal part of ParB is also involved in ParB-ParA interactions. Purified ParB binds specifically to DNA containing a putative parS sequence based on the consensus sequence found in the chromosomes of Bacillus subtilis, Pseudomonas putida, and Streptomyces coelicolor. The overproduction of ParB was shown to inhibit the function of genes placed near parS. This “silencing” was dependent on the parS sequence and its orientation. The overproduction of P. aeruginosa ParB or its N-terminal part also causes inhibition of the growth of P. aeruginosa and P. putida but not Escherichia coli cells. Since this inhibitory determinant is located well away from ParB segments required for dimerization or interaction with the ParA counterpart, this result may suggest a role for the N terminus of P. aeruginosa ParB in interactions with host cell components.


2009 ◽  
Vol 39 (2) ◽  
pp. 117-122 ◽  
Author(s):  
FRANÇOIS MACQUAIRE ◽  
FRANÇOISE BALEUX ◽  
TAM HUYNH-DINH ◽  
JEAN MICHEL NEUMANN ◽  
ALAIN SANSON

2009 ◽  
Vol 52 (4) ◽  
pp. 289-299 ◽  
Author(s):  
P.J. Cachia ◽  
L.M.G. Glasier ◽  
R.R.W. Hodgins ◽  
W.Y. Wong ◽  
R.T. Irvin ◽  
...  

2002 ◽  
Vol 184 (19) ◽  
pp. 5240-5250 ◽  
Author(s):  
Nandini Dasgupta ◽  
Evan P. Ferrell ◽  
Kristen J. Kanack ◽  
Susan E. H. West ◽  
Reuben Ramphal

ABSTRACT The flagellar transcriptional regulator FleQ appears to be the highest-level regulator in the hierarchical regulatory cascade of flagellar biogenesis in Pseudomonas aeruginosa. Except for the posttranslational downregulation of FleQ activity by FleN, an antiactivator, not much is known about the regulation of the fleQ gene or its gene product. Some FleQ homologs in other bacterial species either are positively regulated by another regulator (e.g., CtrA, the master regulator regulating FlbD in Caulobacter crescentus) or are expressed from a σ70-dependent promoter (e.g., FlgR of Helicobacter pylori). In this study we demonstrated that Vfr, an Escherichia coli CRP homolog known to function as an activator for various genes, including lasR, regA, and toxA, in P. aeruginosa, is capable of repressing fleQ transcription by binding to its consensus sequence in the fleQ promoter. In a DNase I footprint assay, purified Vfr protected the sequence 5′-AATTGACTAATCGTTCACATTTG-3′. When this putative Vfr binding site in the fleQ promoter was mutated, Vfr was unable to bind the fleQ promoter fragment and did not repress fleQ transcription effectively. Primer extension analysis of the fleQ transcript revealed two transcriptional start sites, t1 and t2, that map within the Vfr binding site. A putative −10 region (TAAAAT) for the t2 transcript, with a five-of-six match with the E. coli σ70 binding consensus, overlaps with one end of the Vfr binding site. A 4-bp mutation and an 8-bp mutation in this −10 region markedly reduced the activity of the fleQ promoter. The same mutations led to the disappearance of the 203-nucleotide fleQ transcript in an in vitro transcription assay. Vfr probably represses fleQ transcription by binding to the Vfr binding site in the fleQ promoter and preventing the sigma factor from binding to the −10 region to initiate transcription.


2004 ◽  
Vol 186 (12) ◽  
pp. 3848-3854 ◽  
Author(s):  
Shehab Hashim ◽  
Dong-Hyeon Kwon ◽  
Ahmed Abdelal ◽  
Chung-Dar Lu

ABSTRACT The arginine regulatory protein of Pseudomonas aeruginosa, ArgR, is essential for induction of operons that encode enzymes of the arginine succinyltransferase (AST) pathway, which is the primary route for arginine utilization by this organism under aerobic conditions. ArgR also induces the operon that encodes a catabolic NAD+-dependent glutamate dehydrogenase (GDH), which converts l-glutamate, the product of the AST pathway, in α-ketoglutarate. The studies reported here show that ArgR also participates in the regulation of other enzymes of glutamate metabolism. Exogenous arginine repressed the specific activities of glutamate synthase (GltBD) and anabolic NADP-dependent GDH (GdhA) in cell extracts of strain PAO1, and this repression was abolished in an argR mutant. The promoter regions of the gltBD operon, which encodes GltBD, and the gdhA gene, which encodes GdhA, were identified by primer extension experiments. Measurements of β-galactosidase expression from gltB::lacZ and gdhA::lacZ translational fusions confirmed the role of ArgR in mediating arginine repression. Gel retardation assays demonstrated the binding of homogeneous ArgR to DNA fragments carrying the regulatory regions for the gltBD and gdhA genes. DNase I footprinting experiments showed that ArgR protects DNA sequences in the control regions for these genes that are homologous to the consensus sequence of the ArgR binding site. In silica analysis of genomic information for P. fluorescens, P. putida, and P. stutzeri suggests that the findings reported here regarding ArgR regulation of operons that encode enzymes of glutamate biosynthesis in P. aeruginosa likely apply to other pseudomonads.


Sign in / Sign up

Export Citation Format

Share Document