scholarly journals fleQ, the Gene Encoding the Major Flagellar Regulator of Pseudomonas aeruginosa, Is σ70 Dependent and Is Downregulated by Vfr, a Homolog of Escherichia coli Cyclic AMP Receptor Protein

2002 ◽  
Vol 184 (19) ◽  
pp. 5240-5250 ◽  
Author(s):  
Nandini Dasgupta ◽  
Evan P. Ferrell ◽  
Kristen J. Kanack ◽  
Susan E. H. West ◽  
Reuben Ramphal

ABSTRACT The flagellar transcriptional regulator FleQ appears to be the highest-level regulator in the hierarchical regulatory cascade of flagellar biogenesis in Pseudomonas aeruginosa. Except for the posttranslational downregulation of FleQ activity by FleN, an antiactivator, not much is known about the regulation of the fleQ gene or its gene product. Some FleQ homologs in other bacterial species either are positively regulated by another regulator (e.g., CtrA, the master regulator regulating FlbD in Caulobacter crescentus) or are expressed from a σ70-dependent promoter (e.g., FlgR of Helicobacter pylori). In this study we demonstrated that Vfr, an Escherichia coli CRP homolog known to function as an activator for various genes, including lasR, regA, and toxA, in P. aeruginosa, is capable of repressing fleQ transcription by binding to its consensus sequence in the fleQ promoter. In a DNase I footprint assay, purified Vfr protected the sequence 5′-AATTGACTAATCGTTCACATTTG-3′. When this putative Vfr binding site in the fleQ promoter was mutated, Vfr was unable to bind the fleQ promoter fragment and did not repress fleQ transcription effectively. Primer extension analysis of the fleQ transcript revealed two transcriptional start sites, t1 and t2, that map within the Vfr binding site. A putative −10 region (TAAAAT) for the t2 transcript, with a five-of-six match with the E. coli σ70 binding consensus, overlaps with one end of the Vfr binding site. A 4-bp mutation and an 8-bp mutation in this −10 region markedly reduced the activity of the fleQ promoter. The same mutations led to the disappearance of the 203-nucleotide fleQ transcript in an in vitro transcription assay. Vfr probably represses fleQ transcription by binding to the Vfr binding site in the fleQ promoter and preventing the sigma factor from binding to the −10 region to initiate transcription.

1988 ◽  
Vol 253 (3) ◽  
pp. 809-818 ◽  
Author(s):  
K Gaston ◽  
B Chan ◽  
A Kolb ◽  
J Fox ◽  
S Busby

Gene manipulation techniques have been used to alter the binding site for the cyclic AMP-cyclic AMP receptor protein complex (cAMP-CRP) at the regulatory region of the Escherichia coli galactose (gal) operon. The effects of these changes on CRP-dependent stimulation of expression from the galP1 promoter in vivo have been measured, and gel binding assays have been used to measure the affinity of cAMP-CRP for the modified sites. Firstly we have deleted progressively longer sequences from upstream of the gal CRP site in order to locate the functional limit of the site. A deletion to -49, removing the first base that corresponds to the consensus sequence for a CRP binding site, is sufficient to reduce CRP binding and block CRP-dependent stimulation of P1. Secondly, we used synthetic oligonucleotides to invert the asymmetric nucleotide sequence at the gal CRP binding site or to make the sequence symmetric. Inversion of the site has little effect on CRP binding, the architecture of open complexes at P1 revealed by DNAase I footprinting, or the stimulation of transcription from P1. Making the site symmetric increases the affinity for CRP by over 50-fold and leads to increased transcription from P1, whilst hardly altering the DNAase I footprint of open complexes. Our results confirm that the strength of binding of CRP depends on the nature of the site and show that it is this that principally accounts for differences in CRP-dependent stimulation of transcription.


2007 ◽  
Vol 190 (2) ◽  
pp. 699-707 ◽  
Author(s):  
Jong-Hee Lee ◽  
Petros C. Karakousis ◽  
William R. Bishai

ABSTRACTTo characterize the roles of SigB and SigF in sigma factor regulation inMycobacterium tuberculosis, we used chemically inducible recombinant strains to conditionally overexpresssigBandsigF.Using whole genomic microarray analysis and quantitative reverse transcription-PCR, we investigated the resulting global transcriptional changes aftersigBinduction, and we specifically tested the relative expression of other sigma factor genes after knock-in expression ofsigBandsigF. Overexpression ofsigBresulted in significant upregulation of genes encoding several early culture filtrate antigens (ESAT-6-like proteins), ribosomal proteins, PE-PGRS proteins, the keto-acyl synthase, KasA, and the regulatory proteins WhiB2 and IdeR. Of note, the induction ofsigBdid not alter the expression of other sigma factor genes, indicating that SigB is likely to serve as an end regulator for at least one branch of theM. tuberculosissigma factor regulatory cascade. Analysis of the 5′-untranslated region (UTR) of SigB-dependent transcripts revealed a putative consensus sequence of NGTGG-N14-18-NNGNNG. This sequence appeared upstream of bothsigB(Rv2710) and the gene following it,ideR(Rv2711), and in vitro transcription analysis with recombinant SigB-reconstituted RNA polymerase confirmed SigB-dependent transcription from each of these promoters. Knock-in expression ofsigFrevealed that only thesigCgene was significantly upregulated 6 and 12 h aftersigFinduction. The previously identified SigF promoter consensus sequence AGTTTG-N15-GGGTTT was identified in the 5′ UTR of thesigCgene, and SigF-dependent in vitro transcription of the promoter upstream ofsigCwas confirmed by using recombinant SigF-reconstituted RNA polymerase. These two knock-in recombinant strains were tested in a macrophage model of infection which showed that overexpression ofsigBandsigFresulted in reduced rates ofM. tuberculosisintracellular growth. These results define the SigB promoter consensus recognition sequence and members of the SigB regulon. Moreover, the data suggest that, in addition to serving as an end regulator in a sigma factor cascade, SigB may auto-amplify its own expression under certain conditions.


2005 ◽  
Vol 187 (19) ◽  
pp. 6708-6718 ◽  
Author(s):  
Jason R. Wickstrum ◽  
Thomas J. Santangelo ◽  
Susan M. Egan

ABSTRACT The Escherichia coli rhaSR operon encodes two AraC family transcription activator proteins, RhaS and RhaR, which regulate expression of the l-rhamnose catabolic regulon in response to l-rhamnose availability. RhaR positively regulates rhaSR in response to l-rhamnose, and RhaR activation can be enhanced by the cyclic AMP (cAMP) receptor protein (CRP) protein. CRP is a well-studied global transcription regulator that binds to DNA as a dimer and activates transcription in the presence of cAMP. We investigated the mechanism of CRP activation at rhaSR both alone and in combination with RhaR in vivo and in vitro. Base pair substitutions at potential CRP binding sites in the rhaSR-rhaBAD intergenic region demonstrate that CRP site 3, centered at position −111.5 relative to the rhaSR transcription start site, is required for the majority of the CRP-dependent activation of rhaSR. DNase I footprinting confirms that CRP binds to site 3; CRP binding to the other potential CRP sites at rhaSR was not detected. We show that, at least in vitro, CRP is capable of both RhaR-dependent and RhaR-independent activation of rhaSR from a total of three transcription start sites. In vitro transcription assays indicate that the carboxy-terminal domain of the alpha subunit (α-CTD) of RNA polymerase is at least partially dispensable for RhaR-dependent activation but that the α-CTD is required for CRP activation of rhaSR. Although CRP requires the presence of RhaR for efficient in vivo activation of rhaSR, DNase I footprinting assays indicated that cooperative binding between RhaR and CRP does not make a significant contribution to the mechanism of CRP activation at rhaSR. It therefore appears that CRP activates transcription from rhaSR as it would at simple class I promoters, albeit from a relatively distant position.


2000 ◽  
Vol 182 (21) ◽  
pp. 6027-6035 ◽  
Author(s):  
Irina Artsimovitch ◽  
Vladimir Svetlov ◽  
Larry Anthony ◽  
Richard R. Burgess ◽  
Robert Landick

ABSTRACT Adaptation of bacterial cells to diverse habitats relies on the ability of RNA polymerase to respond to various regulatory signals. Some of these signals are conserved throughout evolution, whereas others are species specific. In this study we present a comprehensive comparative analysis of RNA polymerases from two distantly related bacterial species, Escherichia coli and Bacillus subtilis, using a panel of in vitro transcription assays. We found substantial species-specific differences in the ability of these enzymes to escape from the promoter and to recognize certain types of elongation signals. Both enzymes responded similarly to other pause and termination signals and to the general E. coli elongation factors NusA and GreA. We also demonstrate that, although promoter recognition depends largely on the ς subunit, promoter discrimination exhibited in species-specific fashion by both RNA polymerases resides in the core enzyme. We hypothesize that differences in signal recognition are due to the changes in contacts made between the β and β′ subunits and the downstream DNA duplex.


Microbiology ◽  
2009 ◽  
Vol 155 (9) ◽  
pp. 2838-2844 ◽  
Author(s):  
Nicoletta Castiglione ◽  
Serena Rinaldo ◽  
Giorgio Giardina ◽  
Francesca Cutruzzolà

Pseudomonas aeruginosa is a well-known pathogen in chronic respiratory diseases such as cystic fibrosis. Infectivity of P. aeruginosa is related to the ability to grow under oxygen-limited conditions using the anaerobic metabolism of denitrification, in which nitrate is reduced to dinitrogen via nitric oxide (NO). Denitrification is activated by a cascade of redox-sensitive transcription factors, among which is the DNR regulator, sensitive to nitrogen oxides. To gain further insight into the mechanism of NO-sensing by DNR, we have developed an Escherichia coli-based reporter system to investigate different aspects of DNR activity. In E. coli DNR responds to NO, as shown by its ability to transactivate the P. aeruginosa norCB promoter. The direct binding of DNR to the target DNA is required, since mutations in the helix–turn–helix domain of DNR and specific nucleotide substitutions in the consensus sequence of the norCB promoter abolish the transcriptional activity. Using an E. coli strain deficient in haem biosynthesis, we have also confirmed that haem is required in vivo for the NO-dependent DNR activity, in agreement with the property of DNR to bind haem in vitro. Finally, we have shown, we believe for the first time, that DNR is able to discriminate in vivo between different diatomic signal molecules, NO and CO, both ligands of the reduced haem iron in vitro, suggesting that DNR responds specifically to NO.


2007 ◽  
Vol 189 (10) ◽  
pp. 3891-3901 ◽  
Author(s):  
Akeo Shinkai ◽  
Satoshi Kira ◽  
Noriko Nakagawa ◽  
Aiko Kashihara ◽  
Seiki Kuramitsu ◽  
...  

ABSTRACT The extremely thermophilic bacterium Thermus thermophilus HB8, which belongs to the phylum Deinococcus-Thermus, has an open reading frame encoding a protein belonging to the cyclic AMP (cAMP) receptor protein (CRP) family present in many bacteria. The protein named T. thermophilus CRP is highly homologous to the CRP family proteins from the phyla Firmicutes, Actinobacteria, and Cyanobacteria, and it forms a homodimer and interacts with cAMP. CRP mRNA and intracellular cAMP were detected in this strain, which did not drastically fluctuate during cultivation in a rich medium. The expression of several genes was altered upon disruption of the T. thermophilus CRP gene. We found six CRP-cAMP-dependent promoters in in vitro transcription assays involving DNA fragments containing the upstream regions of the genes exhibiting decreased expression in the CRP disruptant, indicating that the CRP is a transcriptional activator. The consensus T. thermophilus CRP-binding site predicted upon nucleotide sequence alignment is 5′-(C/T)NNG(G/T)(G/T)C(A/C)N(A/T)NNTCACAN(G/C)(G/C)-3′. This sequence is unique compared with the known consensus binding sequences of CRP family proteins. A putative −10 hexamer sequence resides at 18 to 19 bp downstream of the predicted T. thermophilus CRP-binding site. The CRP-regulated genes found in this study comprise clustered regularly interspaced short palindromic repeat (CRISPR)-associated (cas) ones, and the genes of a putative transcriptional regulator, a protein containing the exonuclease III-like domain of DNA polymerase, a GCN5-related acetyltransferase homolog, and T. thermophilus-specific proteins of unknown function. These results suggest a role for cAMP signal transduction in T. thermophilus and imply the T. thermophilus CRP is a cAMP-responsive regulator.


1999 ◽  
Vol 181 (23) ◽  
pp. 7266-7273 ◽  
Author(s):  
Igor N. Olekhnovich ◽  
Robert J. Kadner

ABSTRACT Fundamental questions in bacterial gene regulation concern how multiple regulatory proteins interact with the transcription apparatus at a single promoter and what are the roles of protein contacts with RNA polymerase and changes in DNA conformation. Transcription of theEscherichia coli uhpT gene, encoding the inducible sugar phosphate transporter, is dependent on the response regulator UhpA and is stimulated by the cyclic AMP receptor protein (CAP). UhpA binds to multiple sites in the uhpT promoter between positions −80 and −32 upstream of the transcription start site, and CAP binds to a single site centered at position −103.5. The role in uhpTtranscription of portions of RNA polymerase Eς70holoenzyme which affect regulation at other promoters was examined by using series of alanine substitutions throughout the C-terminal domains of RpoA (residues 255 to 329) and of RpoD (residues 570 to 613). Alanine substitutions that affected in vivo expression of auhpT-lacZ transcriptional fusion were tested for their effect on in vitro transcription activity by using reconstituted holoenzymes. Consistent with the binding of UhpA near the −35 region, residues K593 and K599 in the C-terminal region of RpoD were necessary for efficient uhpT expression in response to UhpA alone. Their requirement was overcome when CAP was also present. In addition, residues R265, G296, and S299 in the DNA-binding surface of the C-terminal domain of RpoA (αCTD) were important for uhpTtranscription even in the presence of CAP. Substitutions at several other positions had effects in cells but not during in vitro transcription with saturating levels of the transcription factors. Two DNase-hypersensitive sites near the upstream end of the UhpA-binding region were seen in the presence of all three transcription factors. Their appearance required functional αCTD but not the presence of upstream DNA. These results suggest that both transcription activators depend on or interact with different subunits of RNA polymerase, although their role in formation of proper DNA geometry may also be crucial.


2019 ◽  
Vol 17 (3) ◽  
pp. 140-148 ◽  
Author(s):  
A. Ouelhadj ◽  
L. Ait Salem ◽  
D. Djenane

Ce travail vise l’étude de l’activité antibactérienne de l’huile essentielle (HE) de Pelargoniumx asperum et de la bactériocine, la nisine seul et en combinaison vis-à-vis de six bactéries dont quatre sont multirésistantes d’origine clinique. L’activité antibactérienne in vitro a été évaluée par la méthode de diffusion sur gélose. La concentration minimale inhibitrice (CMI) est aussi déterminée pour HE. Les résultats ont révélé une activité antibactérienne significative exercée par HE visà-vis de Staphylococcus aureus (ATCC 43300), Staphylococcus aureus et Escherichia coli avec des diamètres d’inhibition de 36,00 ; 22,50 et 40,00 mm, respectivement. Cependant, l’HE de Pelargonium asperum a montré une activité antibactérienne supérieure par rapport à la nisine. Les valeurs des CMI rapportées dans cette étude sont comprises entre 1,98–3,96 μl/ml. Les combinaisons réalisées entre HE et la nisine ont montré un effet additif vis-à-vis de Escherichia coli (ATCC 25922) avec (50 % HE Pelargonium asperum + 50 % nisine). Par contre, nous avons enregistré une synergie vis-à-vis de Klebsiella pneumoniae avec (75 % HE Pelargonium asperum + 25 % nisine) et contre Pseudomonas aeruginosa avec les trois combinaisons testées. Les résultats obtenus permettent de dire que l’HE de Pelargonium asperum possède une activité antibactérienne ainsi que sa combinaison avec la nisine pourrait représenter une bonne alternative pour la lutte contre l’antibiorésistance.


Bionatura ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 1335-1339
Author(s):  
Pool Marcos-Carbajal ◽  
Christian Allca-Muñoz ◽  
Ángel Urbano-Niño ◽  
Alberto Salazar-Granara

El objetivo del estudio es determinar la actividad antibacteriana de Metformina frente a Escherichia coli, Staphylococcus aureus y Pseudomonas aeruginosa. Se evaluó la actividad antibacteriana mediante la técnica de Kirby Bauer. Se utilizó cepas de Escherichia coli (ATCC 25922), Staphylococcus aureus (ATCC 25923) y Pseudomonas aeruginosa (ATCC 27853), las cuales se expusieron a Metformina en concentraciones de 250 mg y 500 mg, Ciprofloxacino (CIP) 5 µg, Imipenem (IPM) 10 µg, y Cefoxitin (FOX) 30 µg. Frente a Escherichia coli, Staphylococcus aureus y Pseudomonas aeruginosa se presentó un halo de inhibición de 6 mm. para Metformina 250 mg, 6 mm. para Metformina 500 mg, y un halo de inhibición >25 mm. con el uso de Ciprofloxacino 5 µg, Cefoxitin 30 µg, e Imipenem 10 µg respectivamente. En conclusion, In vitro Metformina a dosis de 250 y 500 mg, no presentó efecto antibacteriano frente a Escherichia coli, Staphylococcus aureus y Pseudomonas aeruginosa.


2021 ◽  
Vol 22 (15) ◽  
pp. 7848
Author(s):  
Annamaria Zannoni ◽  
Simone Pelliciari ◽  
Francesco Musiani ◽  
Federica Chiappori ◽  
Davide Roncarati ◽  
...  

HP1043 is an essential orphan response regulator of Helicobacter pylori orchestrating multiple crucial cellular processes. Classified as a member of the OmpR/PhoB family of two-component systems, HP1043 exhibits a highly degenerate receiver domain and evolved to function independently of phosphorylation. Here, we investigated the HP1043 binding mode to a target sequence in the hp1227 promoter (Php1227). Scanning mutagenesis of HP1043 DNA-binding domain and consensus sequence led to the identification of residues relevant for the interaction of the protein with a target DNA. These determinants were used as restraints to guide a data-driven protein-DNA docking. Results suggested that, differently from most other response regulators of the same family, HP1043 binds in a head-to-head conformation to the Php1227 target promoter. HP1043 interacts with DNA largely through charged residues and contacts with both major and minor grooves of the DNA are required for a stable binding. Computational alanine scanning on molecular dynamics trajectory was performed to corroborate our findings. Additionally, in vitro transcription assays confirmed that HP1043 positively stimulates the activity of RNA polymerase.


Sign in / Sign up

Export Citation Format

Share Document