In-Vivo Whole-Body Imaging of the Laboratory Mouse

Author(s):  
S RCHERRY
Author(s):  
Noriko Sato ◽  
Peter L. Choyke

AbstractIn the past decades, immunotherapies against cancers made impressive progress. Immunotherapy includes a broad range of interventions that can be separated into two major groups: cell-based immunotherapies, such as adoptive T cell therapies and stem cell therapies, and immunomodulatory molecular therapies such as checkpoint inhibitors and cytokine therapies. Genetic engineering techniques that transduce T cells with a cancer-antigen-specific T cell receptor or chimeric antigen receptor have expanded to other cell types, and further modulation of the cells to enhance cancer targeting properties has been explored. Because cell-based immunotherapies rely on cells migrating to target organs or tissues, there is a growing interest in imaging technologies that non-invasively monitor transferred cells in vivo. Here, we review whole-body imaging methods to assess cell-based immunotherapy using a variety of examples. Following a review of preclinically used cell tracking technologies, we consider the status of their clinical translation.


2005 ◽  
Vol 73 (11) ◽  
pp. 7736-7746 ◽  
Author(s):  
Fredrik Pettersson ◽  
Anna M. Vogt ◽  
Cathrine Jonsson ◽  
Bobo W. Mok ◽  
Alireza Shamaei-Tousi ◽  
...  

ABSTRACT The occlusion of vessels by packed Plasmodium falciparum-infected (iRBC) and uninfected erythrocytes is a characteristic postmortem finding in the microvasculature of patients with severe malaria. Here we have employed immunocompetent Sprague-Dawley rats to establish sequestration in vivo. Human iRBC cultivated in vitro and purified in a single step over a magnet were labeled with 99mtechnetium, injected into the tail vein of the rat, and monitored dynamically for adhesion in the microvasculature using whole-body imaging or imaging of the lungs subsequent to surgical removal. iRBC of different lines and clones sequester avidly in vivo while uninfected erythrocytes did not. Histological examination revealed that a multiadhesive parasite adhered in the larger microvasculature, inducing extensive intravascular changes while CD36- and chondroitin sulfate A-specific parasites predominantly sequester in capillaries, inducing no or minor pathology. Removal of the adhesive ligand Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), preincubation of the iRBC with sera to PfEMP1 or preincubation with soluble PfEMP1-receptors prior to injection significantly reduced the sequestration. The specificity of iRBC binding to the heterologous murine receptors was confirmed in vitro, using primary rat lung endothelial cells and rat lung cryosections. In offering flow dynamics, nonmanipulated endothelial cells, and an intact immune system, we believe this syngeneic animal model to be an important complement to existing in vitro systems for the screening of vaccines and adjunct therapies aiming at the prevention and treatment of severe malaria.


2002 ◽  
Vol 22 (8) ◽  
pp. 899-907 ◽  
Author(s):  
Jeff W. M. Bulte ◽  
Ian D. Duncan ◽  
Joseph A. Frank

During the last few years, the therapeutic use of stem and progenitor cells as a substitute for malfunctioning endogenous cell populations has received considerable attention. Unlike their current use in animal models, the introduction of therapeutic cells in patients will require techniques that can monitor their tissue biodistribution noninvasively. Among the different imaging modalities, magnetic resonance (MR) imaging offers both near-cellular (i.e., 25- to 50-μ) resolution and whole-body imaging capability. In order to be visualized, cells must be labeled with an intracellular tracer molecule that can be detected by MR imaging. Methods have now been developed that make it possible to incorporate sufficient amounts of superparamagnetic iron oxide into cells, enabling their detection in vivo using MR imaging. This is illustrated for (neural stem cell—derived) magnetically labeled oligodendroglial progenitors, transplanted in the central nervous system of dysmyelinated rats. Cells can be followed in vivo for at least 6 weeks after transplantation, with a good histopathologic correlation including the formation of myelin. Now that MR tracking of magnetically labeled cells appears feasible, it is anticipated that this technique may ultimately become an important tool for monitoring the efficacy of clinical (stem) cell transplantation protocols.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2436-2436
Author(s):  
Simone S Riedel ◽  
Marco Herold ◽  
Markus Hirschberg ◽  
Christian Brede ◽  
Carina A Baeuerlein ◽  
...  

Abstract Abstract 2436 Poster Board II-413 Sensitive in vivo imaging methods have advanced the fields of stem cell transplantation, graft-versus–host disease (GVHD) and graft-versus-tumor responses (GVT). Near-infrared (NIF) fluorescent proteins (FP) appear advantageous for deeper tissue penetration due to minimized absorbance by hemoglobin, water and lipids. Therefore we tested whether a recently published NIF FP (FP635, “Katushka”) could serve as a single reporter for whole body and single cell imaging. To compare signal intensities of eGFP and FP635 we generated fluorescent MOSEC cell lines (mouse ovarian cancer), titrated them in vitro and subcutaneously (s.c.) in vivo in Balb/c nu/nu mice. MOSEC FP635 showed twice the signal intensities compared to MOSEC eGFP in vitro by spectral fluorescence imaging (FLI). In vivo the eGFP signal was attenuated >60% in contrast to only 20% for FP635 from subcutaneous sites. However, FP635 signals from deep tissue layers were quenched. To address whether reduced signal attenuation of FP635 may allow sensitive visualization of immune processes by FLI and multiphoton-laser-scanning-microscopy (MPM) we generated transgenic mice in the genetic C57Bl/6 (B6) background, expressing FP635 under the ubiquitin promoter. Transgenic founders were selected upon signal intensities of leukocyte populations measured by flow cytometry in the PerCP channel. Combination of FP635 with colors other than red were possible for multiparameter flow cytometry. Next, eGFP, DsRed and FP635 splenocytes from transgenic donors were titrated as described above. In vitro signal intensities of FP635 splenocytes were >5 times lower compared to the other two FPs. FP635 signal absorption in vivo was low (30%) which is consistent with MOSEC titration results. In vivo DsRed detection was most sensitive and signals were similarly attenuated as FP635 in contrast to eGFP (60%). Subsequently, we aimed to visualize FP635 in a model of GVHD, where alloreactive T cells undergo massive expansion. Balb/c nu/nu mice were lethally irradiated and transplanted with 5×106 B6.WT bone marrow cells plus either 2×107 B6.DsRed+Luciferase+ or 2×107 B6.FP635 splenocytes. Sensitivity for DsRed cell detection was superior over FP635 cells. FP635 signal was only weakly detectable in lymph nodes (LN) by ex vivo FLI, where DsRed signals were detectable at earlier timepoints and LNs were even visualized by in vivo FLI. DsRed+ Luciferase+ double transgenic splenocytes allowed direct comparison of bioluminescence imaging (BLI) to FLI. Timely in vivo visualization of immune cells in deep tissues was feasible only by BLI. After whole body imaging the suitability of FP635 for MPM was checked by co-injecting eGFP B cells and either DsRed or FP635 T cells intravenously into RAG-/- mice. As FP635 is a NIF FP we expected to achieve deeper tissue penetration in hemoglobin rich organs, such as the spleen, in single cell microscopy. After 6 weeks of adoptive cell transfer we imaged spleens by MPM. Tissue penetration depths of DsRed or FP635 T cells were compared to eGFP B cells. No advantage in penetration depth of FP635 over DsRed was measured. Photobleaching is an important factor for microscopy, especially if cells are to be tracked over long time. FP635 transfected 293T cells bleached faster (t1/2=108 sec) than 293T cells transfected with eGFP (t1/2>900 sec) or DsRed (t1/2=411 sec). These experiments indicate that very high expression levels of FP635 need to be achieved for imaging. The signal attenuation of FP635 is low which may increase the sensitivity but in our hands DsRed showed comparable characteristics. Yet, the fast photobleaching of FP635 compared to the broadly established FPs DsRed and eGFP may be disadvantageous for long term microscopic tracking of cells. Our data indicate that BLI is by far superior over FLI in sensitivity and tissue penetration for whole body imaging of immune cells. However, FLI of red or near-infrared clonally selectable tumor cell lines may provide a welcome color addition to study immune cell-tumor interactions in combined models of BLI and FLI. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 14 (10) ◽  
pp. S800
Author(s):  
K. Suemori ◽  
M. Kataoka ◽  
D. Okutani ◽  
T. Fujita ◽  
I. Togami ◽  
...  

2016 ◽  
Vol 5 (1) ◽  
pp. 44-48 ◽  
Author(s):  
MINORU TOMIZAWA ◽  
FUMINOBU SHINOZAKI ◽  
KAZUNORI FUGO ◽  
TAKAFUMI SUNAOSHI ◽  
DAISUKE KANO ◽  
...  

2011 ◽  
Author(s):  
Jun Xia ◽  
Zijian Guo ◽  
Andres Aguirre ◽  
Quing Zhu ◽  
Lihong V. Wang

1986 ◽  
Vol 11 (10) ◽  
pp. 716-717 ◽  
Author(s):  
JEREMY J. HOLLERMAN ◽  
MARC A. BERNSTEIN ◽  
JERRY W. FROELICH ◽  
GEORGE SCHKUDOR

Author(s):  
Domenico Albano ◽  
Federico Bruno ◽  
Andrea Agostini ◽  
Salvatore Alessio Angileri ◽  
Massimo Benenati ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document