Immune Recognition of Botulinum Neurotoxins A and B: Molecular Elucidation of Immune Protection Against the Toxins

2009 ◽  
pp. 53-76.e8
Author(s):  
M. Zouhair Atassi ◽  
K. Roger Aoki
2021 ◽  
Author(s):  
Lorenzo De Marco ◽  
Silvia D'Orso ◽  
Marta Pirronello ◽  
Alice Verdiani ◽  
Andrea Termine ◽  
...  

Importance: The emergence of the highly contagious Omicron variant of SARS-CoV-2 and the findings of a significantly reduced neutralizing potency of sera from convalescent or vaccinated individuals imposes the study of cellular immunity to predict the degree of immune protection to the yet again new coronavirus. Design: Prospective monocentric observational study. Setting: Conducted between December 20-21 at the Santa Lucia Foundation IRCCS. Participants: 61 volunteers (Mean age 41.62, range 21-62; 38F/23M) with different vaccination and SARS-CoV-2 infection backgrounds donated 15 ml of blood. Of these donors, one had recently completed chemotherapy, and one was undergoing treatment with monoclonal antibodies; the others reported no known health issue. Main Outcome(s) and Measure(s): The outcomes were the measurement of T cell reactivity to the mutated regions of the Spike protein of the Omicron SARS-CoV-2 variant and the assessment of remaining T cell immunity to the spike protein by stimulation with peptide libraries. Results: Lymphocytes from freshly drawn blood samples were isolated and immediately tested for reactivity to the Spike protein of SARS-CoV-2. T cell responses to peptides covering the mutated regions in the Omicron variant were decreased by over 47% compared to the same regions of the ancestral vaccine strain. However, overall reactivity to the peptide library of the full-length protein was largely maintained (estimated 83%). No significant differences in loss of immune recognition were identified between groups of donors with different vaccination and/or infection histories. Conclusions and Relevance: We conclude that despite the mutations in the Spike protein, the SARS-CoV-2 Omicron variant is nonetheless recognized by the cellular component of the immune system. It is reasonable to assume that protection from hospitalization and severe disease is maintained.


2020 ◽  
Vol 04 (04) ◽  
pp. 369-372
Author(s):  
Paul B. Romesser ◽  
Christopher H. Crane

AbstractEvasion of immune recognition is a hallmark of cancer that facilitates tumorigenesis, maintenance, and progression. Systemic immune activation can incite tumor recognition and stimulate potent antitumor responses. While the concept of antitumor immunity is not new, there is renewed interest in tumor immunology given the clinical success of immune modulators in a wide range of cancer subtypes over the past decade. One particularly interesting, yet exceedingly rare phenomenon, is the abscopal response, characterized by a potent systemic antitumor response following localized tumor irradiation presumably attributed to reactivation of antitumor immunity.


Sign in / Sign up

Export Citation Format

Share Document