Immune Protection
Recently Published Documents


TOTAL DOCUMENTS

510
(FIVE YEARS 251)

H-INDEX

48
(FIVE YEARS 15)

Author(s):  
Eva Untersmayr ◽  
Elisabeth Förster-Waldl ◽  
Michael Bonelli ◽  
Kaan Boztug ◽  
Patrick M. Brunner ◽  
...  

Summary Background The vaccines against the coronavirus disease 2019 (COVID-19) approved in the European Union represent a decisive step in the fight against the pandemic. The application of these available vaccines to patients with pre-existing immunological conditions leads to a multitude of questions regarding efficacy, side effects and the necessary patient information. Results This review article provides insight into mechanisms of action of the currently available severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and summarises the current state of science as well as expert recommendations regarding tolerability of the vaccines. In addition, the potential to develop protective immune responses is determined. A special focus is given on patients under immunosuppression or in treatment with immunomodulatory drugs. Special groups of the population such as children, pregnant women and the elderly are also considered. Conclusion Despite the need for a patient-specific risk–benefit assessment, the consensus among experts is that patients with immunological diseases in particular benefit from the induced immune protection after COVID-19 vaccination and do not have an increased risk of side effects.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 657
Author(s):  
Jai S. Bolton ◽  
Hannah Klim ◽  
Judith Wellens ◽  
Matthew Edmans ◽  
Uri Obolski ◽  
...  

The antigenic drift theory states that influenza evolves via the gradual accumulation of mutations, decreasing a host’s immune protection against previous strains. Influenza vaccines are designed accordingly, under the premise of antigenic drift. However, a paradox exists at the centre of influenza research. If influenza evolved primarily through mutation in multiple epitopes, multiple influenza strains should co-circulate. Such a multitude of strains would render influenza vaccines quickly inefficacious. Instead, a single or limited number of strains dominate circulation each influenza season. Unless additional constraints are placed on the evolution of influenza, antigenic drift does not adequately explain these observations. Here, we explore the constraints placed on antigenic drift and a competing theory of influenza evolution – antigenic thrift. In contrast to antigenic drift, antigenic thrift states that immune selection targets epitopes of limited variability, which constrain the variability of the virus. We explain the implications of antigenic drift and antigenic thrift and explore their current and potential uses in the context of influenza vaccine design.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 639
Author(s):  
Jakub Kulus ◽  
Magdalena Kulus ◽  
Katarzyna Stefańska ◽  
Jarosław Sobolewski ◽  
Hanna Piotrowska-Kempisty ◽  
...  

The effect of BCG vaccination against tuberculosis on the reduction in COVID-19 infection is related to the effect of the BCG vaccine on the immunomodulation of non-specific immunity. In the early stages of the pandemic, countries with universal BCG vaccination programs registered a low number of new cases of COVID-19, with the situation now reversed, as exemplified by India. The high genetic variability of SARS-CoV-2, a known characteristic of RNA viruses, causing the occurrence of SARS-CoV-2 variants may have led to the virus adapting to overcome the initial immune protection. The strains from the United Kingdom (B1.1.7), Brazil (B1.1.28 and B1.1.33), South Africa (B.1.351), and India (B.1.617) are characterized by a greater ability to spread in the environment, in comparison with the original infectious agent of SARS-CoV-2. It should be remembered that the large variation in the genetic makeup of SARS-CoV-2 may result in future changes in its pathogenicity, immunogenicity and antigenicity, and therefore it is necessary to carefully study the mutations occurring within the virus to determine whether the current vaccines will remain effective. However, most studies show that monoclonal antibodies produced after vaccination against COVID-19 are effective against the newly developed variants.


2021 ◽  
Author(s):  
Eva Piano Mortari ◽  
Cristina Russo ◽  
Maria Rosaria Vinci ◽  
Sara Terreri ◽  
Ane Fernandez Salinas ◽  
...  

Specific memory B cells and antibodies are reliable read-out of vaccine efficacy. We analyzed these biomarkers after one and two doses of BNT162b2 vaccine. The second dose significantly increases the level of highly-specific memory B cells and antibodies. Two months after the second dose, specific antibody levels decline, but highly specific memory B cells continue to increase thus predicting a sustained protection from COVID-19. We show that although mucosal IgA is not induced by the vaccination, memory B cells migrate in response to inflammation and secrete IgA at mucosal sites. We show that first vaccine dose may lead to an insufficient number of highly specific memory B cells and low concentration of serum antibodies thus leaving vaccinees without the immune robustness needed to ensure viral elimination and herd immunity. We also clarify that the reduction of serum antibodies does not diminish the force and duration of the immune protection induced by vaccination. The vaccine does not induce sterile immunity. Infection after vaccination may be caused by the lack of local preventive immunity because of the absence of mucosal IgA.


2021 ◽  
Author(s):  
Jinwen Xian ◽  
Ning Wang ◽  
Pengpeng Zhao ◽  
Yanyan Zhang ◽  
Jimeng Meng ◽  
...  

Abstract Background: Cystic echinococcosis, a serious parasitic zoonosis, is caused by tapeworm (Echinococcus granulosus) larvae. The development of an effective vaccine is a promising strategy to control echinococcosis. E. granulosus has a complete tricarboxylic acid cycle pathway, in which 3-hydroxyacyl-CoA dehydrogenase (EGR-03347) is a key enzyme.Methods: In the present study, the cDNA encoding EGR-03347 in Echinococcus granulosus (rEGR-03347) was successfully cloned and the molecular and biochemical characterizations carried out. The immunoreactivity of recombinant EGR-03347 (rEGR-03347) was investigated using western blotting. The immunolocalization of EGR-03347 in different life stages of E. granulosus was determined using specific polyclonal antibody, quantitative real-time reverse transcription polymerase chain reaction was used to analyze their transcript levels in PSCs and 28-day strobilated worms stages. In addition, recombinant protein rEGR-03347 was mixed with the adjuvant Quil A for vaccinating dogs, after three vaccine injections, all the dogs were orally challenge-infected with 100000 protoscoleces of E. granulosus. After 28 days of infection, all the dogs were euthanized and necropsied for collecting and counting E. granulosus worms, post-infection the antibody and cytokine were measured for the immunogenicity analysis of this protein.Results: rEGR-03347 is a highly conserved protein, consisting of 308 amino acids. Recombinant EGR-03347 could be identifed in the sera of patients with CE and in mouse anti-rEGR-03347 sera. Immunofluorescence analysis showed that EGR-03347 mainly localized in the tegument of protoscoleces and adults, and their transcript levels were high in the 28-day strobilated worms. Furthermore, enzyme-linked immunosorbent assays post‑infection showed that IgG gradually increased after the first immunization with rEGR-03347 compared with the control group, rEGR-03347 changed the interferon gamma and interleukin 4 levels. We observed an 87.2 % reduction in E. granulosus numbers and 66.7 % inhibition of the segmental development of E. granulosus in the rEGR‑03347‑vaccinated dogs compared with the nonvaccinated controls.Conclusions: This is the first report characterizing a 3-hydroxyacyl-CoA dehydrogenase from the tapeworm E. granulosus. We have characterized the sequence, structure and location of EGR‑03347 and investigated the immunoreactivity, immunogenicity and serodiagnostic potential of rEGR‑03347 . The results demonstrated rEGR-03347 as a potential vaccine against E. granulosus infection in dogs.


2021 ◽  
Author(s):  
Rafael Pinilla-Redondo ◽  
Jakob Russel ◽  
David Mayo-Muñoz ◽  
Shiraz A Shah ◽  
Roger A Garrett ◽  
...  

Many prokaryotes encode CRISPR-Cas systems as immune protection against mobile genetic elements (MGEs), yet, a number of MGEs also harbor CRISPR-Cas components. With a few exceptions, CRISPR-Cas loci encoded on MGEs are uncharted and a comprehensive analysis of their distribution, prevalence, diversity, and function is lacking. Here, we systematically investigated CRISPR-Cas loci across the largest curated collection of natural bacterial and archaeal plasmids. CRISPR-Cas loci are widely but heterogeneously distributed across plasmids and, in comparison to host chromosomes, their mean prevalence per Mbp is higher and their distribution is markedly distinct. Furthermore, the spacer content of plasmid CRISPRs exhibits a strong targeting bias towards other plasmids, while chromosomal arrays are enriched with virus-targeting spacers. These contrasting targeting preferences dominate across the diversity of CRISPR-Cas subtypes and host taxa, highlighting the genetic independence of plasmids and suggesting a major role of CRISPR-Cas for mediating plasmid-plasmid conflicts. Altogether, CRISPR-Cas are frequent accessory components of many plasmids, which is an overlooked phenomenon that possibly facilitates their dissemination across microbiomes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alexia Dumas ◽  
Ulla G. Knaus

Redox medicine is a new therapeutic concept targeting reactive oxygen species (ROS) and secondary reaction products for health benefit. The concomitant function of ROS as intracellular second messengers and extracellular mediators governing physiological redox signaling, and as damaging radicals instigating or perpetuating various pathophysiological conditions will require selective strategies for therapeutic intervention. In addition, the reactivity and quantity of the oxidant species generated, its source and cellular location in a defined disease context need to be considered to achieve the desired outcome. In inflammatory diseases associated with oxidative damage and tissue injury, ROS source specific inhibitors may provide more benefit than generalized removal of ROS. Contemporary approaches in immunity will also include the preservation or even elevation of certain oxygen metabolites to restore or improve ROS driven physiological functions including more effective redox signaling and cell-microenvironment communication, and to induce mucosal barrier integrity, eubiosis and repair processes. Increasing oxidants by host-directed immunomodulation or by exogenous supplementation seems especially promising for improving host defense. Here, we summarize examples of beneficial ROS in immune homeostasis, infection, and acute inflammatory disease, and address emerging therapeutic strategies for ROS augmentation to induce and strengthen protective host immunity.


2021 ◽  
Author(s):  
Luka Cicin-Sain ◽  
Yeonsu Kim ◽  
Xiaoyan Zheng ◽  
Kathrin Eschke ◽  
M. Zeeshan Chaudhry ◽  
...  

Abstract Global pandemics by influenza or coronaviruses cause severe disruptions to the public health and lead to severe morbidity and mortality. Vaccines against these pathogens remain a medical need. CMV (cytomegalovirus) is a β-herpesvirus that induces uniquely robust immune responses, where outstandingly large populations of antigen-specific CD8+ T cells are maintained for a lifetime. Hence, CMV has been proposed and investigated as a novel vaccine vector expressing antigenic peptides or proteins to elicit protective cellular immune responses against numerous pathogens. We generated two recombinant murine CMV (MCMV) vaccine vectors expressing the hemagglutinin (HA) of influenza A virus (MCMVHA) or the spike protein of the severe acute respiratory syndrome coronavirus 2 (MCMVS). A single shot of MCMVs expressing either viral protein induced potent neutralizing antibody responses, which strengthened over time. Importantly, MCMVHA vaccinated mice were protected from illness following challenge with the influenza virus, and we excluded that this protection was due to effects of memory T cells. Conclusively, we show here that MCMV vectors do not only induce long-term cellular immunity, but also humoral responses that provide long-term immune protection against clinically relevant respiratory pathogens.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Bergithe E. Oftedal ◽  
Stefano Maio ◽  
Adam E. Handel ◽  
Madeleine P. J. White ◽  
Duncan Howie ◽  
...  

AbstractT cells rely for their development and function on the correct folding and turnover of proteins generated in response to a broad range of molecular cues. In the absence of the eukaryotic type II chaperonin complex, CCT, T cell activation induced changes in the proteome are compromised including the formation of nuclear actin filaments and the formation of a normal cell stress response. Consequently, thymocyte maturation and selection, and T cell homeostatic maintenance and receptor-mediated activation are severely impaired. In the absence of CCT-controlled protein folding, Th2 polarization diverges from normal differentiation with paradoxical continued IFN-γ expression. As a result, CCT-deficient T cells fail to generate an efficient immune protection against helminths as they are unable to sustain a coordinated recruitment of the innate and adaptive immune systems. These findings thus demonstrate that normal T cell biology is critically dependent on CCT-controlled proteostasis and that its absence is incompatible with protective immunity.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jose Aguilera ◽  
Miguel Vicente-Manzanares ◽  
María Victoria de Gálvez ◽  
Enrique Herrera-Ceballos ◽  
Azahara Rodríguez-Luna ◽  
...  

Background: Novel approaches to photoprotection must go beyond classical MED measurements, as discoveries on the effect of UV radiation on skin paints a more complex and multi-pronged scenario with multitude of skin cell types involved. Of these, photoimmunoprotection emerges as a crucial factor that protects against skin cancer and photoaging. A novel immune parameter is enabled by the precise knowledge of the wavelength and dose of solar radiation that induces photoimmunosupression. Natural substances, that can play different roles in photoprotection as antioxidant, immune regulation, and DNA protection as well as its possible ability as sunscreen are the new goals in cosmetic industry.Objective: To analyze the effect of a specific natural extract from Polypodium leucotomos (PLE, Fernblock®), as part of topical sunscreen formulations to protect from photoimmunosuppression, as well as other deleterious biological effects of UV radiation.Methods: The possible sunscreen effect of PLE was analyzed by including 1% (w/w) PLE in four different galenic formulations containing different combinations of UVB and UVA organic and mineral filters. In vitro sun protection factor (SPF), UVA protection factor (UVA-PF), contact hypersensitivity factor (CHS), and human immunoprotection factor (HIF) were estimated following the same protocol as ISO 24443:2012 for in vitro UVA-PF determination.Results: PLE-containing formulations significantly reduced UV radiation reaching to skin. Combination of UVB and UVA filters with PLE increased SPF and UVAPF significantly. PLE also increased UV immune protection, by elevating the contact hypersensitivity factor and the human immunoprotective factor of the sunscreen formulations.Conclusion: This study confirms the double role of PLE in photoprotection. Together to the biological activity shown in previous works, the UV absorption properties of PLE confers a booster effect when it is supplemented in topical sunscreens increasing the protection not only at level of erythema and permanent pigment darkening but also against two photoimmunoprotection factors.


Export Citation Format

Share Document