MOLECULAR MODELS OF DNA-BASIC PROTEIN COMPLEXES

Author(s):  
P. DE SANTIS
1995 ◽  
Vol 73 (11-12) ◽  
pp. 751-756 ◽  
Author(s):  
Thomas R. Easterwood ◽  
Stephen C. Harvey

Considering the size and complexity of the ribosome and the growing body of data from a wide range of experiments on ribosomal structure, it is becoming increasingly important to develop tools that facilitate the development of reliable models for the ribosome. We use a combination of manual and computer-based approaches for building and refining models of the ribosome and other RNA–protein complexes. Our methods are aimed at determining the range of models compatible with the data, making quantitative statements about the positional uncertainties (resolution) of different regions, identifying conflicts in the data, establishing which regions of the ribosome need further experimental exploration, and, where possible, predicting the outcome of future experiments. Our previous low-resolution model for the small subunit of the Escherichia coli ribosome is briefly reviewed, along with progress on atomic resolution modeling of the mRNA–tRNA complex and its interaction with the decoding site of the 16S RNA.Key words: molecular models, 30S subunit, 16S decoding site, Escherichia coli, tRNA–mRNA complex.


1998 ◽  
Vol 90 (1) ◽  
pp. 78
Author(s):  
K. Selmaj ◽  
H. Cwiklinska ◽  
O. Ludvsammorov ◽  
M. Kwinkowski ◽  
C.F. Brosnan ◽  
...  

Biochemistry ◽  
1991 ◽  
Vol 30 (26) ◽  
pp. 6509-6516 ◽  
Author(s):  
George L. Mendz ◽  
David J. Miller ◽  
Ian M. Jamie ◽  
John W. White ◽  
Larry R. Brown ◽  
...  

2009 ◽  
Vol 188 (2) ◽  
pp. 181-190 ◽  
Author(s):  
Benedicte Delaval ◽  
Stephen J. Doxsey

Pericentrin is an integral component of the centrosome that serves as a multifunctional scaffold for anchoring numerous proteins and protein complexes. Through these interactions, pericentrin contributes to a diversity of fundamental cellular processes. Recent studies link pericentrin to a growing list of human disorders. Studies on pericentrin at the cellular, molecular, and, more recently, organismal level, provide a platform for generating models to elucidate the etiology of these disorders. Although the complexity of phenotypes associated with pericentrin-mediated disorders is somewhat daunting, insights into the cellular basis of disease are beginning to come into focus. In this review, we focus on human conditions associated with loss or elevation of pericentrin and propose cellular and molecular models that might explain them.


Biochemistry ◽  
1988 ◽  
Vol 27 (1) ◽  
pp. 379-386 ◽  
Author(s):  
George L. Mendz ◽  
Walter J. Moore ◽  
Ian J. Kaplin ◽  
Bruce A. Cornell ◽  
Frances Separovic ◽  
...  

1980 ◽  
Vol 189 (3) ◽  
pp. 455-459 ◽  
Author(s):  
T Itano ◽  
R Itano ◽  
J T Penniston

Low concentrations (less than 10 microgram/ml) of a number of highly basic polypeptides inhibit the calmodulin-stimulated cyclic nucleotide phosphodiesterase. Inhibitory compounds include synthetic polypeptides [polylysine (D and L) and polyarginine] and basic proteins (protamine, histones H1, H2A, H2B, H3 and H4 and myelin basic protein). Polylysine of mol.wt. about 2000 or higher was inhibitory, but pentalysine did not inhibit. Other basic proteins and compounds did not inhibit, including bradykinin, spermine and putrescine. In mixtures of calmodulin and basic protein, complexes were formed whether Ca2+ was present or not. This was true for polylysine, myelin basic protein and histone H2B. These interactions suggest that the inhibition of the phosphodiesterase is due to interaction of these basic proteins with calmodulin. The wide variety of basic polypeptides and proteins that affect the calmodulin stimulation of phosphodiesterase indicates that these interactions are not specific.


Author(s):  
Norman Davidson

The basic protein film technique for mounting nucleic acids for electron microscopy has proven to be a general and powerful tool for the working molecular biologist in characterizing different nucleic acids. It i s possible to measure molecular lengths of duplex and single-stranded DNAs and RNAs. In particular, it is thus possible to as certain whether or not the nucleic acids extracted from a particular source are or are not homogeneous in length. The topological properties of the polynucleotide chain (linear or circular, relaxed or supercoiled circles, interlocked circles, etc. ) can also be as certained.


Author(s):  
E. H. Egelman ◽  
X. Yu

The RecA protein of E. coli has been shown to mediate genetic recombination, regulate its own synthesis, control the expression of other genes, act as a specific protease, form a helical polymer and have an ATPase activity, among other observed properties. The unusual filament formed by the RecA protein on DNA has not previously been shown to exist outside of bacteria. Within this filament, the 36 Å pitch of B-form DNA is extended to about 95 Å, the pitch of the RecA helix. We have now establishedthat similar nucleo-protein complexes are formed by bacteriophage and yeast proteins, and availableevidence suggests that this structure is universal across all of biology, including humans. Thus, understanding the function of the RecA protein will reveal basic mechanisms, in existence inall organisms, that are at the foundation of general genetic recombination and repair.Recombination at this moment is assuming an importance far greater than just pure biology. The association between chromosomal rearrangements and neoplasms has become stronger and stronger, and these rearrangements are most likely products of the recombinatory apparatus of the normal cell. Further, damage to DNA appears to be a major cause of cancer.


Author(s):  
C.A. Mannella ◽  
K.F. Buttle ◽  
K.A. O‘Farrell ◽  
A. Leith ◽  
M. Marko

Early transmission electron microscopy of plastic-embedded, thin-sectioned mitochondria indicated that there are numerous junctions between the outer and inner membranes of this organelle. More recent studies have suggested that the mitochondrial membrane contacts may be the site of protein complexes engaged in specialized functions, e.g., import of mitochondrial precursor proteins, adenine nucleotide channeling, and even intermembrane signalling. It has been suggested that the intermembrane contacts may be sites of membrane fusion involving non-bilayer lipid domains in the two membranes. However, despite growing interest in the nature and function of intramitochondrial contact sites, little is known about their structure.We are using electron microscopic tomography with the Albany HVEM to determine the internal organization of mitochondria. We have reconstructed a 0.6-μm section through an isolated, plasticembedded rat-liver mitochondrion by combining 123 projections collected by tilting (+/- 70°) around two perpendicular tilt axes. The resulting 3-D image has confirmed the basic inner-membrane organization inferred from lower-resolution reconstructions obtained from single-axis tomography.


Author(s):  
L. T. Germinario ◽  
J. Blackwell ◽  
J. Frank

This report describes the use of digital correlation and averaging methods 1,2 for the reconstruction of high dose electron micrographs of the chitin-protein complex from Megarhyssa ovipositor. Electron microscopy of uranyl acetate stained insect cuticle has demonstrated a hexagonal array of unstained chitin monofibrils, 2.4−3.0 nm in diameter, in a stained protein matrix3,4. Optical diffraction Indicated a hexagonal lattice with a = 5.1-8.3 nm3 A particularly well ordered complex is found in the ovipositor of the ichneumon fly Megarhyssa: the small angle x-ray data gives a = 7.25 nm, and the wide angle pattern shows that the protein consists of subunits arranged in a 61 helix, with an axial repeat of 3.06 nm5.


Sign in / Sign up

Export Citation Format

Share Document