Frequency and hold time effects on crack growth of Ti–24Al–11Nb at high temperature

Author(s):  
Basant K. Parida ◽  
Theodore Nicholas
Author(s):  
Dianyin Hu ◽  
Rongqiao Wang

Experiments on the fatigue crack growth have shown great dispersancy. Study on stochastic crack growth of material at room temperature has been widely performed. However, probabilistic model for crack growth at fatigue-creep has been little investigated due to the complexity of the deterministic model for crack growth at fatigue-creep as well as the time-consuming and the difficulty of the experiments. Traditional crack measurement such as direct current and alternating current electrical potential technique, compliance method is limited for circuit interference at large crack, especially when the temperature is higher than 500°C. Experimental system to achieve real-time FCCG detection at high temperature is established by introducing a long-distance microscope with high magnification and resolution from distances of 15cm to 35cm. The experimental setup consists of a dynamic testing machine, a machine controller, a temperature controlled box, a long-distance microscope and a high temperature furnace from room temperature to 1000°C. Then the fatigue-creep crack growth (FCCG) rate tests on thirty compact tension (CT) specimens made of GH4133B material at 600°C are carried out. The reason for choosing the GH4133B Ni-based superalloy is owing to its popularity in use for the turbine disc of the aero-engine. The tests are conducted on a 100KN capacity servo-hydraulic closed-loop machine employed trapezoidal load with hold time at upon peak load. Based on the crack growth models used for room temperature, the deterministic model for FCCG rate considering the parameters including temperature, hold time is established through comparison of the analytical results with the experimental data. Then the stochastic FCCG model for GH4133B is proposed and the probability of random to reach a specified crack size can be obtained as well as the distribution function of crack size at the service time. Through comparison between the analytical and experimental results, it’s found that the probabilistic FCCG model can fit the experimental data well. Once the stochastic FCCG model is established, it can be used for the probabilistic damage tolerance design of the turbine components made of GH4133B material.


1978 ◽  
Vol 26 (6) ◽  
pp. 1007-1022 ◽  
Author(s):  
B.K. Min ◽  
R. Raj

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4418
Author(s):  
Minqing Wang ◽  
Jinhui Du ◽  
Qun Deng

In this study, we examine the mechanism of fatigue-crack propagation in 718Plus superalloy at 704 °C under fatigue–creep–environment interactions, in this case, a new turbine disc material used in aero-engines at high temperatures. The effect of creep on the fatigue-crack propagation of the superalloy at high temperature was also researched. There was an unusual inhibitory effect on the propagation of fatigue cracks in 718Plus alloy, in which the propagation rate of fatigue cracks decreased with the increase of creep time through exploration of dwell-fatigue-crack growth (DFCG) test with different creep times. In particular, under lower stress intensity factor range (ΔK) conditions, the fatigue-crack growth rate with a 90 s hold-time was one order of magnitude lower than that with a 5 s hold-time. Conversely, the gap between the two DFCGs gradually decreased with the increase of ΔK and the creep effect became less apparent. The mechanism of crack propagation in 718Plus alloy under two creep conditions was investigated from a viewpoint of the microstructure, oxidation rate at high temperature and crack path morphology under different conditions.


Sign in / Sign up

Export Citation Format

Share Document