Analyzing plant mechanosensitive ion channels expressed in giant E. coli spheroplasts by single-channel patch-clamp electrophysiology

Author(s):  
Angela M. Schlegel ◽  
Elizabeth S. Haswell
2020 ◽  
Author(s):  
Angela M. Schlegel ◽  
Elizabeth S. Haswell

ABSTRACTMechanosensitive (MS) ion channels are widespread mechanisms for cellular mechanosensation that can be directly activated by membrane tension. The well-studied MscS family of MS ion channels is found in bacteria, archaea, and plants. MscS-Like (MSL)1 is localized to the inner mitochondrial membrane of Arabidopsis thaliana, where it is required for normal mitochondrial responses to oxidative stress. Like Escherichia coli MscS, MSL1 has a pore-lining helix that is kinked. However, in MSL1 this kink is comprised of two charged pore-lining residues, R326 and D327. Using single channel patch-clamp electrophysiology in E. coli, we show that altering the size and charge of R326 and D327 leads to dramatic changes in open state dwell time. Modest changes in gating pressure and open state stability were also observed while no effects on channel rectification or conductance were detected. MSL1 channel variants had differing physiological function in E. coli hypoosmotic shock assays, without clear correlation between function and particular channel characteristics. Taken together, these results demonstrate that altering pore-lining residue charge and size disrupts normal channel state stability and gating transitions, and led us to propose the “sweet spot” model. In this model, the transition to the closed state is facilitated by attraction between R326 and D327 and repulsion between R326 residues of neighboring monomers. In the open state, expansion of the channel reduces inter-monomeric repulsion, rendering open state stability influenced mainly by attractive forces. This work provides insight into how unique charge-charge interactions can be combined with an otherwise conserved structural feature to help modulate MS channel function.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1716
Author(s):  
Kun Tong ◽  
Ruotian Zhang ◽  
Fengzhi Ren ◽  
Tao Zhang ◽  
Junlin He ◽  
...  

Novel α-aminoamide derivatives containing different benzoheterocyclics moiety were synthesized and evaluated as voltage-gated sodium ion channels blocks the treatment of pain. Compounds 6a, 6e, and 6f containing the benzofuran group displayed more potent in vivo analgesic activity than ralfinamide in both the formalin test and the writhing assay. Interestingly, they also exhibited potent in vitro anti-Nav1.7 and anti-Nav1.8 activity in the patch-clamp electrophysiology assay. Therefore, compounds 6a, 6e, and 6f, which have inhibitory potency for two pain-related Nav targets, could serve as new leads for the development of analgesic medicines.


FEBS Letters ◽  
1989 ◽  
Vol 259 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Catherine Berrier ◽  
Alain Coulombe ◽  
Christine Houssin ◽  
Alexandre Ghazi

2019 ◽  
Author(s):  
Huifang Yan ◽  
Guy Helman ◽  
Swetha E. Murthy ◽  
Haoran Ji ◽  
Joanna Crawford ◽  
...  

Mechanically activated (MA) ion channels convert physical forces into electrical signals. Despite the importance of this function, the involvement of mechanosensitive ion channels in human disease is poorly understood. Here we report heterozygous missense mutations in the gene encoding the MA ion channel TMEM63A that result in an infantile disorder resembling a hypomyelinating leukodystrophy. Four unrelated individuals presented with congenital nystagmus, motor delay, and deficient myelination on serial scans in infancy, prompting the diagnosis of Pelizaeus-Merzbacher (like) disease. Genomic sequencing revealed all four individuals carry heterozygous missense variants in the pore-forming domain of TMEM63A. These variants were confirmed to have arisende novoin three of the four individuals. While the physiological role of TMEM63A is incompletely understood, it is highly expressed in oligodendrocytes and it has recently been shown to be a mechanically activated (MA) ion channel. Using patch clamp electrophysiology, we demonstrated that each of the modelled variants results in strongly attenuated stretch-activated currents when expressed in naïve cells. Unexpectedly, the clinical evolution of all four individuals has been surprisingly favorable, with substantial improvements in neurological signs and developmental progression. In the three individuals with follow-up scans after four years of age, the myelin deficit had almost completely resolved. Our results suggest a previously unappreciated role for mechanosensitive ion channels in myelin development.


Nature ◽  
1990 ◽  
Vol 348 (6298) ◽  
pp. 261-263 ◽  
Author(s):  
Boris Martinac ◽  
Julius Adler ◽  
Ching Kung

Sign in / Sign up

Export Citation Format

Share Document