Fossil Fuel Emissions Control Technologies

2015 ◽  
2021 ◽  
Vol 7 (23) ◽  
pp. eabd6034
Author(s):  
C. Ronnie Drever ◽  
Susan C. Cook-Patton ◽  
Fardausi Akhter ◽  
Pascal H. Badiou ◽  
Gail L. Chmura ◽  
...  

Alongside the steep reductions needed in fossil fuel emissions, natural climate solutions (NCS) represent readily deployable options that can contribute to Canada’s goals for emission reductions. We estimate the mitigation potential of 24 NCS related to the protection, management, and restoration of natural systems that can also deliver numerous co-benefits, such as enhanced soil productivity, clean air and water, and biodiversity conservation. NCS can provide up to 78.2 (41.0 to 115.1) Tg CO2e/year (95% CI) of mitigation annually in 2030 and 394.4 (173.2 to 612.4) Tg CO2e cumulatively between 2021 and 2030, with 34% available at ≤CAD 50/Mg CO2e. Avoided conversion of grassland, avoided peatland disturbance, cover crops, and improved forest management offer the largest mitigation opportunities. The mitigation identified here represents an important potential contribution to the Paris Agreement, such that NCS combined with existing mitigation plans could help Canada to meet or exceed its climate goals.


Author(s):  
Yongming Han ◽  
Zhisheng An ◽  
Richard Arimoto ◽  
Colin N. Waters ◽  
Tobias Schneider ◽  
...  

2012 ◽  
Vol 9 (9) ◽  
pp. 12259-12308 ◽  
Author(s):  
V. Haverd ◽  
M. R. Raupach ◽  
P. R. Briggs ◽  
J. G. Canadell ◽  
S. J. Davis ◽  
...  

Abstract. This paper reports a study of the full carbon (C-CO2) budget of the Australian continent, focussing on 1990–2011 in the context of estimates over two centuries. The work is a contribution to the RECCAP (REgional Carbon Cycle Assessment and Processes) project, as one of numerous regional studies being synthesised in RECCAP. In constructing the budget, we estimate the following component carbon fluxes: Net Primary Production (NPP); Net Ecosystem Production (NEP); fire; Land Use Change (LUC); riverine export; dust export; harvest (wood, crop and livestock) and fossil fuel emissions (both territorial and non-territorial). The mean NEP reveals that climate variability and rising CO2 contributed 12 ± 29 (1σ error on mean) and 68 ± 35 Tg C yr−1 respectively. However these gains were partially offset by fire and LUC (along with other minor fluxes), which caused net losses of 31 ± 5 Tg C yr−1 and 18 ± 7 Tg C yr−1 respectively. The resultant Net Biome Production (NBP) of 31 ± 35 Tg C yr−1 offset fossil fuel emissions (95 ± 6 Tg C yr−1) by 32 ± 36%. The interannual variability (IAV) in the Australian carbon budget exceeds Australia's total carbon emissions by fossil fuel combustion and is dominated by IAV in NEP. Territorial fossil fuel emissions are significantly smaller than the rapidly growing fossil fuel exports: in 2009–2010, Australia exported 2.5 times more carbon in fossil fuels than it emitted by burning fossil fuels.


Author(s):  
Iryna Novakovska ◽  
Igor Slavin ◽  
Nataliia Ishchenko ◽  
Liliia Skrypnyk

The article analyses peculiarities and specific features of the use of alternative power and fuel capacities during its formation in the sphere of air transport land management. The following elements of the system for producing power-efficient resources comprises have been considered. It substantiates the necessity to involve the concepts of design and use of a modern power-efficient airport infrastructure and its connection with sound and efficient land management. The authors consider the experience of other countries and the perspectives of alternative power and fuel resources – the "green areas". Also It have been established that every new project of an airport or a reconstructed one, shall be focused on meeting the latest standards of minimization of the airport’s impact on the environment and on the reduction of climatic changes, connected with its infrastructure and activities. Within the studies of the experts in the sphere of the aviation industry, and the members of ICAO council, it have been considered the concept of development and use of a modern, power-efficient airport infrastructure. The authors have proposed a modification of the methodological calculation of resource conservation indicators by reducing fossil fuel emissions within the airport and surrounding areas.


Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 476
Author(s):  
Kevin J. Warner ◽  
Glenn A. Jones

China and India are not only the two most populous nations on Earth, they are also two of the most rapidly growing economies. Historically, economic and social development have been subsidized by cheap and abundant fossil-fuels. Climate change from fossil-fuel emissions has resulted in the need to reduce fossil-fuel emissions in order to avoid catastrophic warming. If climate goals are achieved, China and India will have been the first major economies to develop via renewable energy sources. In this article, we examine the factors of projected population growth, available fossil-fuel reserves, and renewable energy installations required to develop scenarios in which both China and India may increase per capita energy consumption while remaining on trach to meet ambitious climate goals. Here, we show that China and India will have to expand their renewable energy infrastructure at unprecedented rates in order to support both population growth and development goals. In the larger scope of the literature, we recommend community-based approaches to microgrid and cookstove development in both China and India.


2019 ◽  
Vol 19 (17) ◽  
pp. 11235-11252 ◽  
Author(s):  
Alice Corina Forello ◽  
Vera Bernardoni ◽  
Giulia Calzolai ◽  
Franco Lucarelli ◽  
Dario Massabò ◽  
...  

Abstract. In this paper, a new methodology coupling aerosol optical and chemical parameters in the same source apportionment study is reported. In addition to results on source contributions, this approach provides information such as estimates for the atmospheric absorption Ångström exponent (α) of the sources and mass absorption cross sections (MACs) for fossil fuel emissions at different wavelengths. A multi-time resolution source apportionment study using the Multilinear Engine (ME-2) was performed on a PM10 dataset with different time resolutions (24, 12, and 1 h) collected during two different seasons in Milan (Italy) in 2016. Samples were optically analysed by an in-house polar photometer to retrieve the aerosol absorption coefficient bap (in Mm−1) at four wavelengths (λ=405, 532, 635, and 780 nm) and were chemically characterized for elements, ions, levoglucosan, and carbonaceous components. The dataset joining chemically speciated and optical data was the input for the multi-time resolution receptor model; this approach was proven to strengthen the identification of sources, thus being particularly useful when important chemical markers (e.g. levoglucosan, elemental carbon) are not available. The final solution consisted of eight factors (nitrate, sulfate, resuspended dust, biomass burning, construction works, traffic, industry, aged sea salt); the implemented constraints led to a better physical description of factors and the bootstrap analysis supported the goodness of the solution. As for bap apportionment, consistent with what was expected, biomass burning and traffic were the main contributors to aerosol absorption in the atmosphere. A relevant feature of the approach proposed in this work is the possibility of retrieving a lot of other information about optical parameters; for example, in contrast to the more traditional approach used by optical source apportionment models, here we obtained source-dependent α values without any a priori assumption (α biomass burning =1.83 and α fossil fuels =0.80). In addition, the MACs estimated for fossil fuel emissions were consistent with literature values. It is worth noting that the approach presented here can also be applied using more common receptor models (e.g. EPA PMF instead of multi-time resolution ME-2) if the dataset comprises variables with the same time resolution as well as optical data retrieved by widespread instrumentation (e.g. an Aethalometer instead of in-house instrumentation).


Sign in / Sign up

Export Citation Format

Share Document