Sediment Soot Radiocarbon Indicates that Recent Pollution Controls Slowed Fossil Fuel Emissions in Southeastern China

Author(s):  
Yongming Han ◽  
Zhisheng An ◽  
Richard Arimoto ◽  
Colin N. Waters ◽  
Tobias Schneider ◽  
...  
2021 ◽  
Vol 7 (23) ◽  
pp. eabd6034
Author(s):  
C. Ronnie Drever ◽  
Susan C. Cook-Patton ◽  
Fardausi Akhter ◽  
Pascal H. Badiou ◽  
Gail L. Chmura ◽  
...  

Alongside the steep reductions needed in fossil fuel emissions, natural climate solutions (NCS) represent readily deployable options that can contribute to Canada’s goals for emission reductions. We estimate the mitigation potential of 24 NCS related to the protection, management, and restoration of natural systems that can also deliver numerous co-benefits, such as enhanced soil productivity, clean air and water, and biodiversity conservation. NCS can provide up to 78.2 (41.0 to 115.1) Tg CO2e/year (95% CI) of mitigation annually in 2030 and 394.4 (173.2 to 612.4) Tg CO2e cumulatively between 2021 and 2030, with 34% available at ≤CAD 50/Mg CO2e. Avoided conversion of grassland, avoided peatland disturbance, cover crops, and improved forest management offer the largest mitigation opportunities. The mitigation identified here represents an important potential contribution to the Paris Agreement, such that NCS combined with existing mitigation plans could help Canada to meet or exceed its climate goals.


2012 ◽  
Vol 9 (9) ◽  
pp. 12259-12308 ◽  
Author(s):  
V. Haverd ◽  
M. R. Raupach ◽  
P. R. Briggs ◽  
J. G. Canadell ◽  
S. J. Davis ◽  
...  

Abstract. This paper reports a study of the full carbon (C-CO2) budget of the Australian continent, focussing on 1990–2011 in the context of estimates over two centuries. The work is a contribution to the RECCAP (REgional Carbon Cycle Assessment and Processes) project, as one of numerous regional studies being synthesised in RECCAP. In constructing the budget, we estimate the following component carbon fluxes: Net Primary Production (NPP); Net Ecosystem Production (NEP); fire; Land Use Change (LUC); riverine export; dust export; harvest (wood, crop and livestock) and fossil fuel emissions (both territorial and non-territorial). The mean NEP reveals that climate variability and rising CO2 contributed 12 ± 29 (1σ error on mean) and 68 ± 35 Tg C yr−1 respectively. However these gains were partially offset by fire and LUC (along with other minor fluxes), which caused net losses of 31 ± 5 Tg C yr−1 and 18 ± 7 Tg C yr−1 respectively. The resultant Net Biome Production (NBP) of 31 ± 35 Tg C yr−1 offset fossil fuel emissions (95 ± 6 Tg C yr−1) by 32 ± 36%. The interannual variability (IAV) in the Australian carbon budget exceeds Australia's total carbon emissions by fossil fuel combustion and is dominated by IAV in NEP. Territorial fossil fuel emissions are significantly smaller than the rapidly growing fossil fuel exports: in 2009–2010, Australia exported 2.5 times more carbon in fossil fuels than it emitted by burning fossil fuels.


Author(s):  
Iryna Novakovska ◽  
Igor Slavin ◽  
Nataliia Ishchenko ◽  
Liliia Skrypnyk

The article analyses peculiarities and specific features of the use of alternative power and fuel capacities during its formation in the sphere of air transport land management. The following elements of the system for producing power-efficient resources comprises have been considered. It substantiates the necessity to involve the concepts of design and use of a modern power-efficient airport infrastructure and its connection with sound and efficient land management. The authors consider the experience of other countries and the perspectives of alternative power and fuel resources – the "green areas". Also It have been established that every new project of an airport or a reconstructed one, shall be focused on meeting the latest standards of minimization of the airport’s impact on the environment and on the reduction of climatic changes, connected with its infrastructure and activities. Within the studies of the experts in the sphere of the aviation industry, and the members of ICAO council, it have been considered the concept of development and use of a modern, power-efficient airport infrastructure. The authors have proposed a modification of the methodological calculation of resource conservation indicators by reducing fossil fuel emissions within the airport and surrounding areas.


Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 476
Author(s):  
Kevin J. Warner ◽  
Glenn A. Jones

China and India are not only the two most populous nations on Earth, they are also two of the most rapidly growing economies. Historically, economic and social development have been subsidized by cheap and abundant fossil-fuels. Climate change from fossil-fuel emissions has resulted in the need to reduce fossil-fuel emissions in order to avoid catastrophic warming. If climate goals are achieved, China and India will have been the first major economies to develop via renewable energy sources. In this article, we examine the factors of projected population growth, available fossil-fuel reserves, and renewable energy installations required to develop scenarios in which both China and India may increase per capita energy consumption while remaining on trach to meet ambitious climate goals. Here, we show that China and India will have to expand their renewable energy infrastructure at unprecedented rates in order to support both population growth and development goals. In the larger scope of the literature, we recommend community-based approaches to microgrid and cookstove development in both China and India.


2019 ◽  
Vol 19 (17) ◽  
pp. 11235-11252 ◽  
Author(s):  
Alice Corina Forello ◽  
Vera Bernardoni ◽  
Giulia Calzolai ◽  
Franco Lucarelli ◽  
Dario Massabò ◽  
...  

Abstract. In this paper, a new methodology coupling aerosol optical and chemical parameters in the same source apportionment study is reported. In addition to results on source contributions, this approach provides information such as estimates for the atmospheric absorption Ångström exponent (α) of the sources and mass absorption cross sections (MACs) for fossil fuel emissions at different wavelengths. A multi-time resolution source apportionment study using the Multilinear Engine (ME-2) was performed on a PM10 dataset with different time resolutions (24, 12, and 1 h) collected during two different seasons in Milan (Italy) in 2016. Samples were optically analysed by an in-house polar photometer to retrieve the aerosol absorption coefficient bap (in Mm−1) at four wavelengths (λ=405, 532, 635, and 780 nm) and were chemically characterized for elements, ions, levoglucosan, and carbonaceous components. The dataset joining chemically speciated and optical data was the input for the multi-time resolution receptor model; this approach was proven to strengthen the identification of sources, thus being particularly useful when important chemical markers (e.g. levoglucosan, elemental carbon) are not available. The final solution consisted of eight factors (nitrate, sulfate, resuspended dust, biomass burning, construction works, traffic, industry, aged sea salt); the implemented constraints led to a better physical description of factors and the bootstrap analysis supported the goodness of the solution. As for bap apportionment, consistent with what was expected, biomass burning and traffic were the main contributors to aerosol absorption in the atmosphere. A relevant feature of the approach proposed in this work is the possibility of retrieving a lot of other information about optical parameters; for example, in contrast to the more traditional approach used by optical source apportionment models, here we obtained source-dependent α values without any a priori assumption (α biomass burning =1.83 and α fossil fuels =0.80). In addition, the MACs estimated for fossil fuel emissions were consistent with literature values. It is worth noting that the approach presented here can also be applied using more common receptor models (e.g. EPA PMF instead of multi-time resolution ME-2) if the dataset comprises variables with the same time resolution as well as optical data retrieved by widespread instrumentation (e.g. an Aethalometer instead of in-house instrumentation).


2017 ◽  
Author(s):  
Alecia Nickless ◽  
Peter J. Rayner ◽  
Francois Engelbrecht ◽  
Ernst-Günther Brunke ◽  
Birgit Erni ◽  
...  

Abstract. The results of a high resolution Bayesian inversion over the City of Cape Town, South Africa, are presented, which used observations of atmospheric carbon dioxide from sites at Robben Island and Hangklip lighthouses collected over a sixteen month period from March 2012 until June 2013. A Lagrangian particle dispersion model driven by the regional climate model Conformal Cubic Atmospheric Model (CCAM) was used to provide the sensitivities of the observations to the surface sources and boundary concentrations. This regional climate model was dynamically coupled to the CABLE (Community Atmosphere Biosphere Land Exchange) model, which provided prior estimates of the biogenic fluxes. Prior estimates of the fossil fuel emissions were obtained from an inventory analysis specifically carried out for this inversion exercise, making use of vehicle count data, population census data, fuel usage at industrial point sources, and aviation and shipping vessel counts. The inversion solved for the actual concentration measurements at each site, which was made possible by the use of the Cape Point background site to provide information on the boundaries, and was necessary due to the effect of topography on the atmospheric transport, affecting particularly the sensitivity of the Robben Island site to the surface fluxes. Night-time observations were included, but allocated much larger errors compared to the daytime observations. The inversion was able to substantially improve the agreement between the modelled and observed concentrations, and able to better represent the diurnal cycle in the concentrations compared with the prior modelled concentrations. The mean bias in the modelled concentrations was reduced from −2.9 ppm, with interquartile range −9.1 to 3.7, for the prior modelled concentrations, to 0.5, with interquartile range −1.5 to 1.5, for the posterior modelled concentrations at Robben Island, and from a bias of 2.4 ppm in the prior modelled concentrations at the Hangklip site, with interquartile range −2.3 to 6.5, to a bias of 0.04, with interquartile range −1.1 to 0.8. The standard deviations of the posterior residuals at both sites were reduced to values below that of the observed concentrations. The inversion solved for working week and weekend fossil fuel emissions, and weekly biogenic fluxes, each split into day and night contributions, for each month; therefore six surface sources per week within each of the 10,201 surface pixels. The inversion was also allowed to solve for each of the four boundary concentrations (north, east, south and west), but these were provided with tight constraints provided by the background site. The inversion tended to reduce fossil fuel emissions over all months. During the warmer, drier months, the inversion increased the biogenic fluxes, but reduced the biogenic emissions during the cooler, wetter months. The uncertainty reduction in the total estimate for the domain over each month ranged between 8.6 to 40.0% for the biogenic fluxes and between 0.4 to 16.4% for the fossil fuel fluxes. Model assessment by means of the Chi squared statistic indicated that the mean statistic was 1.48 over all months, indicating that either the prior values for the model errors or the uncertainty in the fluxes was not specified high enough for some months. A companion paper on sensitivity analyses will address different options for the specification of the correlations between errors in the modelled concentrations, how these prior errors are determined, how correlations are determined between the prior fluxes, and how the state vector is specified. Greater confidence is given to the inversion's ability to correct the total flux within each pixel, rather than the individual flux estimates.


2014 ◽  
Vol 14 (14) ◽  
pp. 7273-7290 ◽  
Author(s):  
D. Bozhinova ◽  
M. K. van der Molen ◽  
I. R. van der Velde ◽  
M. C. Krol ◽  
S. van der Laan ◽  
...  

Abstract. Radiocarbon dioxide (14CO2, reported in Δ14CO2) can be used to determine the fossil fuel CO2 addition to the atmosphere, since fossil fuel CO2 no longer contains any 14C. After the release of CO2 at the source, atmospheric transport causes dilution of strong local signals into the background and detectable gradients of Δ14CO2 only remain in areas with high fossil fuel emissions. This fossil fuel signal can moreover be partially masked by the enriching effect that anthropogenic emissions of 14CO2 from the nuclear industry have on the atmospheric Δ14CO2 signature. In this paper, we investigate the regional gradients in 14CO2 over the European continent and quantify the effect of the emissions from nuclear industry. We simulate the emissions and transport of fossil fuel CO2 and nuclear 14CO2 for Western Europe using the Weather Research and Forecast model (WRF-Chem) for a period covering 6 summer months in 2008. We evaluate the expected CO2 gradients and the resulting Δ14CO2 in simulated integrated air samples over this period, as well as in simulated plant samples. We find that the average gradients of fossil fuel CO2 in the lower 1200 m of the atmosphere are close to 15 ppm at a 12 km × 12 km horizontal resolution. The nuclear influence on Δ14CO2 signatures varies considerably over the domain and for large areas in France and the UK it can range from 20 to more than 500% of the influence of fossil fuel emissions. Our simulations suggest that the resulting gradients in Δ14CO2 are well captured in plant samples, but due to their time-varying uptake of CO2, their signature can be different with over 3‰ from the atmospheric samples in some regions. We conclude that the framework presented will be well-suited for the interpretation of actual air and plant 14CO2 samples.


Sign in / Sign up

Export Citation Format

Share Document