Local Fractional Integral Transforms and their Applications

2016 ◽  
1984 ◽  
Vol 36 (5) ◽  
pp. 924-960 ◽  
Author(s):  
R. Wong ◽  
J. P. Mcclure

A large number of important integral transforms, such as Laplace, Fourier sine and cosine, Hankel, Stieltjes, and Riemann- Liouville fractional integral transforms, can be put in the form1.1where f(t) and the kernel, h(t), are locally integrable functions on (0,∞), and x is a positive parameter. Recently, two important techniques have been developed to give asymptotic expansions of I(x) as x → + ∞ or x → 0+. One method relies heavily on the theory of Mellin transforms [8] and the other is based on the use of distributions [24]. Here, of course, the integral I(x) is assumed to exist in some ordinary sense.If the above integral does not exist in any ordinary sense, then it may be regarded as an integral transform of a distribution (generalized function). There are mainly two approaches to extend the classical integral transforms to distributions.


2018 ◽  
Vol 38 (1) ◽  
pp. 101-116 ◽  
Author(s):  
Muharrem Tomar ◽  
Praveen Agarwal ◽  
Junesang Choi

We aim to  establish certain generalized Hermite-Hadamard's inequalities for generalized convex functions via local fractional integral. As special cases of some of the results presented here, certain interesting inequalities involving generalized arithmetic and logarithmic means are obtained.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Junesang Choi ◽  
Praveen Agarwal

A remarkably large number of integral transforms and fractional integral formulas involving various special functions have been investigated by many authors. Very recently, Agarwal gave some integral transforms and fractional integral formulas involving theFp(α,β)(·). In this sequel, using the same technique, we establish certain integral transforms and fractional integral formulas for the generalized Gauss hypergeometric functionsFp(α,β,m)(·). Some interesting special cases of our main results are also considered.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Xiao-Jing Ma ◽  
H. M. Srivastava ◽  
Dumitru Baleanu ◽  
Xiao-Jun Yang

We propose a new Neumann series method to solve a family of local fractional Fredholm and Volterra integral equations. The integral operator, which is used in our investigation, is of the local fractional integral operator type. Two illustrative examples show the accuracy and the reliability of the obtained results.


Author(s):  
Dumitru Baleanu ◽  
Xiao-Jun Yang

In this paper we discuss the local fractional Fourier series representations of fractal signals. Fractal signal processes are described within the local fractional integral operator. Four examples are presented in order to illustrate the developed technique.


2019 ◽  
pp. 22-28
Author(s):  
Suzan J Obaiys ◽  
Hamid A Jalab ◽  
Rabha W Ibrahim

The use of local fractional calculus has increased in different applications of image processing. This study proposes a new algorithm for image denoising to remove Gaussian noise in digital images. The proposed algorithm is based on local fractional integral of Chebyshev polynomials. The proposed structures of the local fractional windows are obtained by four masks created for x and y directions. On four directions, a convolution product of the input image pixels with the local fractional mask window has been performed. The visual perception and peak signal-to-noise ratio (PSNR) with the structural similarity index (SSIM) are used as image quality measurements. The experiments proved that the accomplished filtering results are better than the Gaussian filter. Keywords: local fractional; Chebyshev polynomials; Image denoising


2020 ◽  
Vol 5 (2) ◽  
pp. 15-34 ◽  
Author(s):  
Daljeet Kaur ◽  
Praveen Agarwal ◽  
Madhuchanda Rakshit ◽  
Mehar Chand

AbstractAim of the present paper is to establish fractional integral formulas by using fractional calculus operators involving the generalized (p, q)-Mathieu type series. Then, their composition formulas by using the integral transforms are introduced. Further, a new generalized form of the fractional kinetic equation involving the series is also developed. The solutions of fractional kinetic equations are presented in terms of the Mittag-Leffler function. The results established here are quite general in nature and capable of yielding both known and new results.


2012 ◽  
Vol 461 ◽  
pp. 306-310 ◽  
Author(s):  
Wei Ping Zhong ◽  
Feng Gao ◽  
Xiao Ming Shen

Yang-Fourier transform is the generalization of the fractional Fourier transform of non-differential functions on fractal space. In this paper, we show applications of Yang-Fourier transform to local fractional equations with local fractional derivative and local fractional integral


Sign in / Sign up

Export Citation Format

Share Document