Deep Learning for Chest Radiographs

2021 ◽  
Author(s):  
Paul H. Yi ◽  
Jinchi Wei ◽  
Tae Kyung Kim ◽  
Jiwon Shin ◽  
Haris I. Sair ◽  
...  

2020 ◽  
Vol 5 (4) ◽  
pp. 449 ◽  
Author(s):  
Shuhei Toba ◽  
Yoshihide Mitani ◽  
Noriko Yodoya ◽  
Hiroyuki Ohashi ◽  
Hirofumi Sawada ◽  
...  

Author(s):  
Zhiyun Xue ◽  
Rodney Long ◽  
Stefan Jaeger ◽  
Les Folio ◽  
R. George Thoma ◽  
...  

PLoS Medicine ◽  
2018 ◽  
Vol 15 (11) ◽  
pp. e1002683 ◽  
Author(s):  
John R. Zech ◽  
Marcus A. Badgeley ◽  
Manway Liu ◽  
Anthony B. Costa ◽  
Joseph J. Titano ◽  
...  

2020 ◽  
Vol 30 (9) ◽  
pp. 4943-4951
Author(s):  
Young-Gon Kim ◽  
Sang Min Lee ◽  
Kyung Hee Lee ◽  
Ryoungwoo Jang ◽  
Joon Beom Seo ◽  
...  

2021 ◽  
Vol 31 (5) ◽  
pp. 53
Author(s):  
Sabitha Krishnamoorthy ◽  
Manju Chandran ◽  
Sudhakar Ramakrishnan ◽  
LansonBrijesh Colaco ◽  
Akshay Dias ◽  
...  

2021 ◽  
Author(s):  
Zheng Wang ◽  
Qingjun Qian ◽  
Jianfang Zhang ◽  
Caihong Duo ◽  
Wen He ◽  
...  

Abstract Background: The diagnosis of pneumoconiosis relies primarily on chest radiographs and exhibits significant variability between physicians. Computer-aided diagnosis (CAD) can improve the accuracy and consistency of these diagnoses. However, CAD based on machine learning requires extensive human intervention and time-consuming training. As such, deep learning has become a popular tool for the development of CAD models. In this study, the clinical applicability of CAD based on deep learning was verified for pneumoconiosis patients.Methods: Chest radiographs were collected from 5424 occupational health examiners who met the inclusion criteria. The data were divided into training, validation, and test sets. The CAD algorithm was then trained and applied to processing of the validation set, while the test set was used to evaluate diagnostic efficacy. Three junior and three senior physicians provided independent diagnoses using images from the test set and a comprehensive diagnosis for comparison with the CAD results. A receiver operating characteristic (ROC) curve was used to evaluate the diagnostic efficiency of the proposed CAD system. A McNemar test was used to evaluate diagnostic sensitivity and specificity for pneumoconiosis, both before and after the use of CAD. A kappa consistency test was used to evaluate the diagnostic consistency for both the algorithm and the clinicians.Results: ROC results suggested the proposed CAD model achieved high accuracy in the diagnosis of pneumoconiosis, with a kappa value of 0.90. The sensitivity, specificity, and kappa values for the junior doctors increased from 0.86 to 0.98, 0.68 to 0.86, and 0.54 to 0.84, respectively (p<0.05), when CAD was applied. However, metrics for the senior doctors were not significantly different.Conclusion: DL-based CAD can improve the diagnostic sensitivity, specificity, and consistency of pneumoconiosis diagnoses, particularly for junior physicians.


Author(s):  
Kyungjin Cho ◽  
Jiyeon Seo ◽  
Mingyu Kim ◽  
Gil-Sun Hong ◽  
Namkug Kim

2018 ◽  
Vol 69 (5) ◽  
pp. 739-747 ◽  
Author(s):  
Eui Jin Hwang ◽  
Sunggyun Park ◽  
Kwang-Nam Jin ◽  
Jung Im Kim ◽  
So Young Choi ◽  
...  

Abstract Background Detection of active pulmonary tuberculosis on chest radiographs (CRs) is critical for the diagnosis and screening of tuberculosis. An automated system may help streamline the tuberculosis screening process and improve diagnostic performance. Methods We developed a deep learning–based automatic detection (DLAD) algorithm using 54c221 normal CRs and 6768 CRs with active pulmonary tuberculosis that were labeled and annotated by 13 board-certified radiologists. The performance of DLAD was validated using 6 external multicenter, multinational datasets. To compare the performances of DLAD with physicians, an observer performance test was conducted by 15 physicians including nonradiology physicians, board-certified radiologists, and thoracic radiologists. Image-wise classification and lesion-wise localization performances were measured using area under the receiver operating characteristic (ROC) curves and area under the alternative free-response ROC curves, respectively. Sensitivities and specificities of DLAD were calculated using 2 cutoffs (high sensitivity [98%] and high specificity [98%]) obtained through in-house validation. Results DLAD demonstrated classification performance of 0.977–1.000 and localization performance of 0.973–1.000. Sensitivities and specificities for classification were 94.3%–100% and 91.1%–100% using the high-sensitivity cutoff and 84.1%–99.0% and 99.1%–100% using the high-specificity cutoff. DLAD showed significantly higher performance in both classification (0.993 vs 0.746–0.971) and localization (0.993 vs 0.664–0.925) compared to all groups of physicians. Conclusions Our DLAD demonstrated excellent and consistent performance in the detection of active pulmonary tuberculosis on CR, outperforming physicians, including thoracic radiologists.


Sign in / Sign up

Export Citation Format

Share Document