Bone Suppression on Pediatric Chest Radiographs via a Deep Learning-Based Cascade Model

Author(s):  
Kyungjin Cho ◽  
Jiyeon Seo ◽  
Mingyu Kim ◽  
Gil-Sun Hong ◽  
Namkug Kim
2019 ◽  
Vol 54 (10) ◽  
pp. 1617-1626 ◽  
Author(s):  
Longjiang E ◽  
Baisong Zhao ◽  
Yunmei Guo ◽  
Changmeng Zheng ◽  
Mingjie Zhang ◽  
...  

Author(s):  
Paul H. Yi ◽  
Jinchi Wei ◽  
Tae Kyung Kim ◽  
Jiwon Shin ◽  
Haris I. Sair ◽  
...  

2020 ◽  
Vol 5 (4) ◽  
pp. 449 ◽  
Author(s):  
Shuhei Toba ◽  
Yoshihide Mitani ◽  
Noriko Yodoya ◽  
Hiroyuki Ohashi ◽  
Hirofumi Sawada ◽  
...  

Author(s):  
Eric D. McCollum ◽  
Melissa M. Higdon ◽  
Nicholas S. S. Fancourt ◽  
Jack Sternal ◽  
William Checkley ◽  
...  

Abstract Background Chest radiography is the standard for diagnosing pediatric lower respiratory infections in low-income and middle-income countries. A method for interpreting pediatric chest radiographs for research endpoints was recently updated by the World Health Organization (WHO) Chest Radiography in Epidemiological Studies project. Research in India required training local physicians to interpret chest radiographs following the WHO method. Objective To describe the methodology for training Indian physicians and evaluate the training’s effectiveness. Materials and methods Twenty-nine physicians (15 radiologists and 14 pediatricians) from India were trained by two WHO Chest Radiography in Epidemiological Studies members over 3 days in May 2019. Training materials were adapted from WHO Chest Radiography in Epidemiological Studies resources. Participants followed WHO methodology to interpret 60 unique chest radiographs before and after the training. Participants needed to correctly classify ≥80% of radiographs for primary endpoint pneumonia on the post-training test to be certified to interpret research images. We analyzed participant performance on both examinations. Results Twenty-six of 29 participants (89.7%) completed both examinations. The average score increased by 9.6% (95% confidence interval [CI] 5.0–14.1%) between examinations (P<0.001). Participants correctly classifying ≥80% of images for primary endpoint pneumonia increased from 69.2% (18/26) on the pretraining to 92.3% (24/26) on the post-training examination (P=0.003). The mean scores of radiologists and pediatricians on the post-training examination were not statistically different (P=0.43). Conclusion Our results demonstrate this training approach using revised WHO definitions and tools was successful, and that non-radiologists can learn to apply these methods as effectively as radiologists. Such capacity strengthening is important for enabling research to support national policy decision-making in these settings. We recommend future research incorporating WHO chest radiograph methodology to consider modelling trainings after this approach.


PLoS Medicine ◽  
2018 ◽  
Vol 15 (11) ◽  
pp. e1002683 ◽  
Author(s):  
John R. Zech ◽  
Marcus A. Badgeley ◽  
Manway Liu ◽  
Anthony B. Costa ◽  
Joseph J. Titano ◽  
...  

2020 ◽  
Vol 30 (9) ◽  
pp. 4943-4951
Author(s):  
Young-Gon Kim ◽  
Sang Min Lee ◽  
Kyung Hee Lee ◽  
Ryoungwoo Jang ◽  
Joon Beom Seo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document