Speed behaviour in work zone crossovers. A driving simulator study

2017 ◽  
Vol 98 ◽  
pp. 10-24 ◽  
Author(s):  
Lorenzo Domenichini ◽  
Francesca La Torre ◽  
Valentina Branzi ◽  
Alessandro Nocentini
Author(s):  
Siyang Zhang ◽  
Zhu Qing ◽  
Henry Brown ◽  
Carlos Sun ◽  
Praveen Edara

Mobile work zones for various types of moving operations (e.g., striping, pothole patching, sweeping) are an important component in highway maintenance activities which have particular safety issues. To help mitigate the risk and severity of collisions, a truck-mounted attenuator (TMA) is attached to a construction vehicle, typically equipped with amber/white lights. Despite these visible warnings, collisions involving TMAs and traffic still occur. In an effort to improve upon the traditional amber/white lights, the use of green lights on TMAs was investigated. The study included the evaluation of four light-color configurations: amber/white, green only, green/amber, and green/white. Driving simulator tests obtained various driver behavior measures, including the first blinker distance, merge distance, work zone and arrow direction recognition distance, and disability glare. Vehicle speeds were captured in both a simulator study and a field study. In the simulator study, the use of the amber/white combination led to the highest work zone visibility but also created the greatest concern with disability glare. Although the green-only configuration led to the lowest disability glare, it also resulted in low visibility. The results showed an inverse relationship between visibility (awareness of work zone) and arrow board recognition (easy on eyes). Other findings from the field study include lower traffic speeds for the green light TMA and lower vehicle speeds for lower TMA vehicle speeds. Overall, the study showed that the four configurations had various tradeoffs and none stood out as clearly superior in terms of the performance measures.


Author(s):  
R. Wade Allen ◽  
Zareh Parseghian ◽  
Anthony C. Stein

There is a large body of research that documents the impairing effect of alcohol on driving behavior and performance. Some of the most significant alcohol influence seems to occur in divided attention situations when the driver must simultaneously attend to several aspects of the driving task. This paper describes a driving simulator study of the effect of a low alcohol dose, .055 BAC (blood alcohol concentration %/wt), on divided attention performance. The simulation was mechanized on a PC and presented visual and auditory feedback in a truck cab surround. Subjects were required to control speed and steering on a rural two lane road while attending to a peripheral secondary task. The subject population was composed of 33 heavy equipment operators who were tested during both placebo and drinking sessions. Multivariate Analysis of Variance showed a significant and practical alcohol effect on a range of variables in the divided attention driving task.


This proceedings paper was inadvertently published after the authors notified the journal of their desire to withdraw the paper from the conference. The paper was not actually presented at the conference. This retraction is being issued at the authors’ request. The Journal, Human Factors, and SAGE apologize to the authors and readers for the inadvertent publication.


Author(s):  
Harald Witt ◽  
Carl G. Hoyos

Accident statistics and studies of driving behavior have shown repeatedly that curved roads are hazardous. It was hypothesized that the safety of curves could be improved by indicating in advance the course of the road in a more effective way than do traditional road signs. A code of sequences of stripes put on right edge of the pavement was developed to indicate to the driver the radius of the curve ahead. The main characteristic of this code was the frequency of transitions from code elements to gaps between elements. The effect of these markings was investigated on a driving simulator. Twelve subjects drove on simulated roads of different curvature and with different placement of the code in the approach zone. Some positive effects of the advance information could be observed. The subjects drove more steadily, more precisely, and with a more suitable speed profile.


Author(s):  
Mustafa Suhail Almallah ◽  
Qinaat Hussain ◽  
Wael K. M Alhajyaseen ◽  
Tom Brijs

Work zones are road sections where road construction or maintenance activities take place. These work zones usually have different alignment and furniture than the original road and thus temporary lower speeds are adopted at these locations. However, drivers usually face difficulty in adopting the new speed limit and maneuvering safely due to the change in alignment. Therefore, work zones are commonly considered as hazardous locations with higher crash rates and severities as reported in the literature. This study aims to investigate the effectiveness of a variable message signs (VMSs) based system for work zone advance warning area. The proposed system aims at enhancing driver adaptation of the reduced speed limit, encourage early lane changing maneuvers and improve the cooperative driving behavior in the pre-work zone road section. The study was conducted using a driving simulator at the College of Engineering of Qatar University. Seventy volunteers holding a valid Qatari passenger car driving license participated in this study. In the simulator experiment, we have two scenarios (control and treatment). The control scenario was designed based on the Qatar Work Zone Traffic Management Guide (QWZTMG), where the length of the advance warning area is 1000 m. Meanwhile, the treatment scenario contains six newly designed variable message signs where two of them were animation-based. The VMSs were placed at the same locations of the static signs in the control scenario. Both scenarios were tested for two situations. In the first situation, the participants were asked to drive on the left lane while in the second situation, they were instructed to drive on the second lane. The study results showed that the proposed system was effective in motivating drivers to reduce their traveling speed in advance. Compared to the control scenario, drivers’ mean speed was significantly 6.3 and 11.1 kph lower in the VMS scenario in the first and second situations, respectively. Furthermore, the VMS scenario encouraged early lane changing maneuvers. In the VMS scenario, drivers changed their lanes in advance by 150 m compared to the control scenario. In addition, the proposed system was effective in motivating drivers to keep larger headways with the frontal merging vehicle. Taking into account the results from this study, we recommend the proposed VMS based system as a potentially effective treatment to improve traffic safety at work zones.


2021 ◽  
Author(s):  
Mustafa Suhail Almallah ◽  
Shabna Sayed Mohammed ◽  
Qinaat Hussain ◽  
Wael K. M. Alhajyaseen

The illegal overtaking/crossing of stopped school buses has been identified as one of the leading causes of students’ injuries and fatalities. The likelihood of students in getting involved in a school bus-related crash increases during loading/unloading. The main objective of this driving simulator study was to study the effectiveness of different treatments in improving students’ safety by reducing the illegal overtaking/crossing of stopped school buses. Treatments used in this research are LED, Road Narrowing and Red Pavement. All proposed treatments were compared with the control condition (i.e., typical condition in the State of Qatar). Seventy-two subjects with valid Qatari driving license were invited to participate in this study. Each subject was exposed to three situations (i.e., Situation 1: the school bus is stopped in the same traveling direction, Situation 2: the school bus is stopped in the opposite traveling direction, Situation 3: the school bus is not present at the bus stop). Results showed that LED and Road Narrowing treatments were effective in reducing the illegal overtaking/crossing of stopped school buses. Moreover, the stopping behavior for drivers in LED and Road Narrowing was more consistent compared to the Red Pavement and control conditions. Finally, LED and Road Narrowing treatments motivated drivers to reduce their traveling speed by 5.16 km/h and 5.11 km/h, respectively, even with the absence of the school bus. Taking into account the results from this study, we recommend the proposed LED and Road Narrowing as potentially effective treatments to improve students’ safety at school bus stop locations.


Sign in / Sign up

Export Citation Format

Share Document