One-step homogeneous non-stripping chemiluminescence metal immunoassay based on catalytic activity of gold nanoparticles

2014 ◽  
Vol 449 ◽  
pp. 1-8 ◽  
Author(s):  
Yingying Qi ◽  
Fu-Rong Xiu ◽  
Baoxin Li
2008 ◽  
Vol 453 (1-3) ◽  
pp. 77-81 ◽  
Author(s):  
Kang Yeol Lee ◽  
Young Wook Lee ◽  
Kihyun Kwon ◽  
Jinhwa Heo ◽  
Jineun Kim ◽  
...  

2011 ◽  
Vol 21 (17) ◽  
pp. 6173 ◽  
Author(s):  
Weipeng Lv ◽  
Yang Wang ◽  
Wenqian Feng ◽  
Junjie Qi ◽  
Guoliang Zhang ◽  
...  

2016 ◽  
Vol 166 ◽  
pp. 110-112 ◽  
Author(s):  
Jia Yu ◽  
Di Xu ◽  
Hua Nan Guan ◽  
Chao Wang ◽  
Li Kun Huang ◽  
...  

2020 ◽  
Vol 5 (44) ◽  
pp. 13878-13887
Author(s):  
Golnoosh MirMoghtadaei ◽  
Manoj K. Ghosalya ◽  
Luca Artiglia ◽  
Jeroen A. Bokhoven ◽  
Cavus Falamaki

Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 118
Author(s):  
Qui Quach ◽  
Erik Biehler ◽  
Ahmed Elzamzami ◽  
Clay Huff ◽  
Julia M. Long ◽  
...  

The current climate crisis warrants investigation into alternative fuel sources. The hydrolysis reaction of an aqueous hydride precursor, and the subsequent production of hydrogen gas, prove to be a viable option. A network of beta-cyclodextrin capped gold nanoparticles (BCD-AuNP) was synthesized and subsequently characterized by Powder X-Ray Diffraction (P-XRD), Fourier Transform Infrared (FTIR), Transmission Electron Microscopy (TEM), and Ultraviolet-Visible Spectroscopy (UV-VIS) to confirm the presence of gold nanoparticles as well as their size of approximately 8 nm. The catalytic activity of the nanoparticles was tested in the hydrolysis reaction of sodium borohydride. The gold catalyst performed best at 303 K producing 1.377 mL min−1 mLcat−1 of hydrogen. The activation energy of the catalyst was calculated to be 54.7 kJ/mol. The catalyst resisted degradation in reusability trials, continuing to produce hydrogen gas in up to five trials.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 641
Author(s):  
Lukasz Wolski ◽  
Grzegorz Nowaczyk ◽  
Stefan Jurga ◽  
Maria Ziolek

The aim of the study was to establish the influence of a co-precipitation agent (i.e., NaOH–immediate precipitation; hexamethylenetetramine/urea–gradual precipitation and growth of nanostructures) on the properties and catalytic activity of as-synthesized Au-CeO2 nanocomposites. All catalysts were fully characterized with the use of XRD, nitrogen physisorption, ICP-OES, SEM, HR-TEM, UV-vis, XPS, and tested in low-temperature oxidation of benzyl alcohol as a model oxidation reaction. The results obtained in this study indicated that the type of co-precipitation agent has a significant impact on the growth of gold species. Immediate co-precipitation of Au-CeO2 nanostructures with the use of NaOH allowed obtainment of considerably smaller and more homogeneous in size gold nanoparticles than those formed by gradual co-precipitation and growth of Au-CeO2 nanostructures in the presence of hexamethylenetetramine or urea. In the catalytic tests, it was established that the key factor promoting high activity in low-temperature oxidation of benzyl alcohol was size of gold nanoparticles. The highest conversion of the alcohol was observed for the catalyst containing the smallest Au particle size (i.e., Au-CeO2 nanocomposite prepared with the use of NaOH as a co-precipitation agent).


Author(s):  
Francisco G. Cirujano ◽  
Nuria Martin ◽  
Neyvis Almora-Barrios ◽  
Carlos Martí-Gastaldo

Room temperature one-step synthesis of the peptide-based porous material with a periodic distribution of pockets decorated with lysine side chain active sites behaves as a heterogeneous organocatalyst. The pockets are...


Sign in / Sign up

Export Citation Format

Share Document