Boundary convection during velocity sedimentation in the Optima analytical ultracentrifuge

2021 ◽  
pp. 114306
Author(s):  
Steven A. Berkowitz ◽  
Thomas Laue
2021 ◽  
Author(s):  
Steven A. Berkowitz ◽  
Thomas Laue

AbstractAnalytical ultracentrifugation (AUC) provides the most widely applicable, precise and accurate means for characterizing solution hydrodynamic and thermodynamic properties. In recent times AUC has found broad application in the biopharmaceutical industry as a first-principle means for quantitatively characterizing biopharmaceuticals. Boundary sedimentation velocity AUC (SV-AUC) analysis is widely used to assess protein aggregation, fragmentation and conformational variants in the same solvents used during drug development and production. SV-AUC is especially useful for the analysis of drug substance, drug product and dosing solution, where other techniques may exhibit solvent matrix issues or concentration limitations. Recently, the only manufacturer of the analytical ultracentrifuge, released its newest (third generation) analytical ultracentrifuge, the Optima, in early 2017 to replace its aging 2nd generation XL series ultracentrifuges. However, SV-AUC data from four Optima units used in conducting characterization work on adeno-associated virus (AAV) has shown evidence of sample convection. Further investigation reveals that this problem arises from the temperature control system design, which is prone to producing destabilizing temperature induced density gradients that can lead to density inversions. The observed convection impacts both the qualitative and quantitative data generated by the Optima. The problem is intermittent and variable in severity within a given Optima unit and between Optima units. This convection appears to be mainly associated with low rotor speeds and dilute samples in dilute solvents, such as AAV samples in formulation buffers containing relatively low concentrations of salts, sugars, etc. Under these conditions it is found that a sufficiently robust stabilizing density gradient is not always present during sedimentation, making the sample susceptible to convection by localized density inversions. Because SV-AUC is used as an analytical tool in making critical decisions in the development and quality control of biotherapeutics, it is imperative to alert users about this potential problem. In general special attention to data quality needs to be made by those researchers working with very large biopharmaceutical particles (e.g. gene therapy products that involve viral vectors or nanoparticles), where the conditions leading to convection are most likely to occur. It is important to note that the XL series analytical ultracentrifuges do not suffer from this problem, indicating that this problem is unique to the Optima. Attributes that reveal the presence of this problem and strategies for its elimination or minimization are provided.


1984 ◽  
Vol 5 (2) ◽  
pp. 187-194 ◽  
Author(s):  
SATORU KANEKO ◽  
SHIGERU OSHIO ◽  
TOSHIFUMI KOBAYASHI ◽  
HIDEO MOHRI ◽  
RIHACHI IIZUKA

Genetics ◽  
1999 ◽  
Vol 153 (2) ◽  
pp. 595-605 ◽  
Author(s):  
Bradley J Merrill ◽  
Connie Holm

Abstract To examine the role of the RAD52 recombinational repair pathway in compensating for DNA replication defects in Saccharomyces cerevisiae, we performed a genetic screen to identify mutants that require Rad52p for viability. We isolated 10 mec1 mutations that display synthetic lethality with rad52. These mutations (designated mec1-srf for synthetic lethality with rad-fifty-two) simultaneously cause two types of phenotypes: defects in the checkpoint function of Mec1p and defects in the essential function of Mec1p. Velocity sedimentation in alkaline sucrose gradients revealed that mec1-srf mutants accumulate small single-stranded DNA synthesis intermediates, suggesting that Mec1p is required for the normal progression of DNA synthesis. sml1 suppressor mutations suppress both the accumulation of DNA synthesis intermediates and the requirement for Rad52p in mec1-srf mutants, but they do not suppress the checkpoint defect in mec1-srf mutants. Thus, it appears to be the DNA replication defects in mec1-srf mutants that cause the requirement for Rad52p. By using hydroxyurea to introduce similar DNA replication defects, we found that single-stranded DNA breaks frequently lead to double-stranded DNA breaks that are not rapidly repaired in rad52 mutants. Taken together, these data suggest that the RAD52 recombinational repair pathway is required to prevent or repair double-stranded DNA breaks caused by defective DNA replication in mec1-srf mutants.


1985 ◽  
Vol 18 (4) ◽  
pp. 399-406
Author(s):  
E. Niskanen ◽  
J. R. Wells ◽  
D. W. Golde ◽  
M. J. Cline

1978 ◽  
Vol 77 (3) ◽  
pp. 722-734 ◽  
Author(s):  
MM Weiser ◽  
MM Neumeier ◽  
A Quaroni ◽  
K Kirsch

The relationship between Golgi and cell surface membranes of intestinal cells was studied. These membranes were isolated from intestinal crypt cells and villus cells. The villus cell membranes consisted of microvillus membrane, a Golgi-rich fraction, and two membrane fractions interpreted as representing lateral-basal membranes. The villus cell microvillus membrane was purified by previously published techniques while the other membranes were obtained from isolated cells by differential centrifugation and density gradient velocity sedimentation. The two membrane fractions obtained from villus cells and considered to be lateral-basal membranes were enriched for Na+,K+-ATPase activity, but one also showed enrichment in glycosyltransferase activity. The Golgi membrane fraction was enriched for glycosyltransferase activity and had low to absent Na+,K+-ATPase activity. Adenylate cyclase activity was present in all membrane fractions except the microvillus membrane but co-purified with Golgi rather than lateral-basal membranes. Electron microscopy showed that the Golgi fraction consisted of variably sized vesicles and cisternalike structures. The two lateral-basal membrane fractions showed only vesicles of smaller, more uniform size. After 125I labeling of isolated intact cells, radioactivity was found associated with the lateral-basal and microvillus membrane fractions and not with the Golgi fraction. Antibody prepared against lateral-basal membrane fractions reacted with the surface membrane of isolated villus cells. The membrane fractions from isolated crypt cells demonstrated that all had high glycosyltransferase activity. The data show that glycosyltransferase activity, in addition to its Golgi location, may be a significant property of the lateral-basal portion of the intestinal villus cell plasma membrane. Data obtained with crypt cells support earlier data and show that the crypt cell surface membrane possesses glycosyltransferase activity.


1952 ◽  
Vol 73 (11) ◽  
pp. 828-832
Author(s):  
Itaru Watanabe ◽  
Yoshimi Kawade ◽  
San-ichiro Mizushima

1942 ◽  
Vol 20c (3) ◽  
pp. 130-159 ◽  
Author(s):  
A. G. McCalla ◽  
Nils Gralén

The molecular characteristics of gluten in sodium salicylate solutions were studied by means of sedimentation velocity, sedimentation equilibrium, and diffusion measurements. The proportion of total gluten protein molecularly dispersed increased with increase in concentration of sodium salicylate up to 12%, but the dispersed portions had essentially the same sedimentation constant (2.5 ± 0.15) regardless of the concentration of the dispersing medium.The most soluble 25 per cent of the gluten was all molecularly dispersed, but was definitely inhomogeneous. The weight-average molecular weight of this fraction was 44,000, but there is reason to believe the minimum weight may be about 35,000. None of the other fractions was entirely molecularly dispersed, the proportion decreasing with decreasing solubility of the fractions. Aggregates of many sizes existed in all of these fractions, but only the most insoluble contained aggregates large enough to cause opacity. Sedimentation constants of the molecularly dispersed portions increased slightly with decreasing solubility, while diffusion constants decreased markedly. None of the fractions yielded normal curves (diffusion diagrams) but the more soluble the fraction, the more nearly normal the curve. The inhomogeneity responsible for the varying rates of diffusion was due partly to differences in proportion and properties of the molecularly dispersed gluten and partly to aggregates.All properties showed progressive changes both within and between the arbitrarily produced fractions. These results, therefore, support the hypothesis that gluten is a protein system showing progressive and regular changes in properties with change in solubility.


2003 ◽  
Vol 23 (5) ◽  
pp. 1750-1763 ◽  
Author(s):  
Hilary A. Kemp ◽  
George F. Sprague,

ABSTRACT In budding yeast, diffusible mating pheromones initiate a signaling pathway that culminates in several responses, including cell cycle arrest. Only a handful of genes required for the interface between pheromone response and the cell cycle have been identified, among them FAR1 and FAR3; of these, only FAR1 has been extensively characterized. In an effort to learn about the mechanism by which Far3 acts, we used the two-hybrid method to identify interacting proteins. We identified five previously uncharacterized open reading frames, dubbed FAR7, FAR8, FAR9, FAR10, and FAR11, that cause a far3-like pheromone arrest defect when disrupted. Using two-hybrid and coimmunoprecipitation analysis, we found that all six Far proteins interact with each other. Moreover, velocity sedimentation experiments suggest that Far3 and Far7 to Far11 form a complex. The phenotype of a sextuple far3far7-far11 mutant is no more severe than any single mutant. Thus, FAR3 and FAR7 to FAR11 all participate in the same pathway leading to G1 arrest. These mutants initially arrest in response to pheromone but resume budding after 10 h. Under these conditions, wild-type cells fail to resume budding even after several days whereas far1 mutant cells resume budding within 1 h. We conclude that the FAR3-dependent arrest pathway is functionally distinct from that which employs FAR1.


1974 ◽  
Vol 62 (1) ◽  
pp. 19-65 ◽  
Author(s):  
Allan W. Rees ◽  
Edwin A. Lewis ◽  
Michael S. DeBuysere

Sign in / Sign up

Export Citation Format

Share Document