scholarly journals Boundary convection during velocity sedimentation in the Optima analytical ultracentrifuge

2021 ◽  
Author(s):  
Steven A. Berkowitz ◽  
Thomas Laue

AbstractAnalytical ultracentrifugation (AUC) provides the most widely applicable, precise and accurate means for characterizing solution hydrodynamic and thermodynamic properties. In recent times AUC has found broad application in the biopharmaceutical industry as a first-principle means for quantitatively characterizing biopharmaceuticals. Boundary sedimentation velocity AUC (SV-AUC) analysis is widely used to assess protein aggregation, fragmentation and conformational variants in the same solvents used during drug development and production. SV-AUC is especially useful for the analysis of drug substance, drug product and dosing solution, where other techniques may exhibit solvent matrix issues or concentration limitations. Recently, the only manufacturer of the analytical ultracentrifuge, released its newest (third generation) analytical ultracentrifuge, the Optima, in early 2017 to replace its aging 2nd generation XL series ultracentrifuges. However, SV-AUC data from four Optima units used in conducting characterization work on adeno-associated virus (AAV) has shown evidence of sample convection. Further investigation reveals that this problem arises from the temperature control system design, which is prone to producing destabilizing temperature induced density gradients that can lead to density inversions. The observed convection impacts both the qualitative and quantitative data generated by the Optima. The problem is intermittent and variable in severity within a given Optima unit and between Optima units. This convection appears to be mainly associated with low rotor speeds and dilute samples in dilute solvents, such as AAV samples in formulation buffers containing relatively low concentrations of salts, sugars, etc. Under these conditions it is found that a sufficiently robust stabilizing density gradient is not always present during sedimentation, making the sample susceptible to convection by localized density inversions. Because SV-AUC is used as an analytical tool in making critical decisions in the development and quality control of biotherapeutics, it is imperative to alert users about this potential problem. In general special attention to data quality needs to be made by those researchers working with very large biopharmaceutical particles (e.g. gene therapy products that involve viral vectors or nanoparticles), where the conditions leading to convection are most likely to occur. It is important to note that the XL series analytical ultracentrifuges do not suffer from this problem, indicating that this problem is unique to the Optima. Attributes that reveal the presence of this problem and strategies for its elimination or minimization are provided.

2021 ◽  
Author(s):  
Georgios Katsikis ◽  
Iris E Hwang ◽  
Wade Wang ◽  
Vikas S Bhat ◽  
Nicole L McIntosh ◽  
...  

Quantifying the composition of viral vectors used in vaccine development and gene therapy is critical for assessing their functionality. Adeno-Associated Virus (AAV) vectors, which are the most widely used viral vectors for in-vivo gene therapy, are typically characterized using PCR, ELISA, and Analytical Ultracentrifugation which require laborious protocols or hours of turnaround time. Emerging methods such as Charge-Detection Mass Spectroscopy, Static Light Scattering, and Mass Photometry offer turnaround times of minutes for measuring AAV mass, but mostly require purified AAV-based reference materials for calibration. Here, we demonstrate a method for using Suspended Nanomechanical Resonators (SNR) to directly measure both AAV mass and aggregation from a few microliters of sample within minutes. We achieve a resolution near 10 zeptograms which corresponds to 1% of the genome holding capacity of the AAV capsid. Our results show the potential of our method for providing real-time quality control of viral vectors during biomanufacturing.


1999 ◽  
Vol 380 (6) ◽  
Author(s):  
H. Büeler

AbstractAdeno-associated virus (AAV) is a defective, non-pathogenic human parvovirus that depends for growth on coinfection with a helper adenovirus or herpes virus. Recombinant adeno-associated viruses (rAAVs) have attracted considerable interest as vectors for gene therapy. In contrast to other gene delivery systems, rAAVs lack all viral genes and show long-term gene expression


2008 ◽  
Vol 36 (4) ◽  
pp. 766-770 ◽  
Author(s):  
David J. Scott

Hydrodynamic techniques such as analytical ultracentrifugation can provide key information about subunit stoichiometry and interaction strengths of protein–nucleic acid interactions. Analysis is complicated by (i) the need for low concentrations in order to observe both free and bound species and (ii) thermodynamic non-ideality. With the introduction of fluorescence optics, we are able to obtain data at lower concentrations, and improved understanding of the statistical thermodynamics of macromolecular solutions has allowed non-ideality to be accurately assigned. With these developments, it is possible now to assay protein–nucleic acid interactions at concentrations typically used in molecular biology assays.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3787-3787
Author(s):  
Pete Lollar ◽  
Ernest T. Parker ◽  
John F. Healey ◽  
Christopher B. Doering

Abstract Inhibitory polyclonal IgG antibodies (inhibitors) to factor VIII (fVIII) represent the most significant complication in patients with congenital hemophilia A. FVIII also is the most frequently targeted coagulation factor in autoimmunity. Antibodies recognizing epitopes in the fVIII A2 and C2 domains are present in most inhibitor patients. In the current study, we characterized the hydrodynamic properties of fVIII immune complexes formed by murine anti-human anti-A2 and anti-C2 fVIII monoclonal antibodies (MAbs) 4A4 and 3D12. 4A4 is representative of the most frequently identified group of anti-A2 MAbs identified in the murine hemophilia A immune response to human fVIII. 3D12 is a classical anti-C2 MAb that inhibits the binding of fVIII to von Willebrand factor (VWF) and phospholipid membranes. Velocity sedimentation of immune complexes formed by varying ratios of 4A4 and 3D12 with a high-expression fVIII construct designated ET3 was conducted at 55,000g and 20 °C by measuring protein absorbance at 280 nm in a Beckman XL-I analytical ultracentrifuge. Sedimentation coefficient (s20,w) distributions of fVIII, MAbs and immune complexes were determined using SEDFIT. The sedimentation coefficients of fVIII in the absence of MAbs and of the MAbs in the absence of fVIII were 7.7 S and 6.4 S, respectively. Under conditions of excess MAb (equimolar 4A4 and 3D12 each in five-fold molar excess over fVIII), a 10.3 S immune complex was observed, representing singly-ligated MAbs (Figure, red trace). Under conditions of excess fVIII (fVIII in four-fold molar excess over equimolar 4A4 and 3D12), 11.9 S doubly-ligated MAb complexes were observed (Figure, green trace). A mixture containing equimolar fVIII and 4A4/3D12 MAb binding sites produced a dominant 14.0 S species and a minor 18.8 S species, indicative of cross-linked 3D12-fVIII-4A4 immune complexes (Figure, blue trace). Indefinite association or immunoprecipitation was not observed. These results demonstrate that a biclonal, bivalent anti-fVIII antibody population can form higher-order immune complexes. These complexes may be a driving factor in the immune response to fVIII by promoting B cell activation and/or antigen presentation. Additionally, these results indicate that analytical ultracentrifugation is a useful tool to characterize fVIII immune complexes. Figure Figure. Disclosures No relevant conflicts of interest to declare.


2009 ◽  
Vol 03 (01) ◽  
pp. 7 ◽  
Author(s):  
Swita R Singh ◽  
Uday B Kompella ◽  
◽  

The relatively immune-privileged status of the eye makes it an interesting target for gene delivery. Gene delivery to the eye using viral vectors via subretinal and intravitreal injections has been extensively investigated. Recently, the safety of recombinant adeno-associated virus vector expressing RPE65 complementary DNA (cDNA) in a limited clinical trial of three patients has also been reported. Nanotechnology-based non-viral vectors offer the advantages of safety and flexibility in terms of loading capacity and delivery system design compared with viral vectors. An ideal non-viral vector should be non-toxic, efficiently taken up into the target cells and conducive to gene expression, and should protect the gene against enzymatic degradation. Multiple kinds of nanotechnology-based non-viral vectors have been investigated for potential applications for gene delivery to the eye, namely nanoplexes, dendrimers, micelles, nanoparticles and liposomes. This article summarises and discusses key advances in the application of nanotechnology for gene delivery to the eye.


2003 ◽  
Vol 8 (1) ◽  
pp. 151-157 ◽  
Author(s):  
Luca Perabo ◽  
Hildegard Büning ◽  
David M Kofler ◽  
Martin U Ried ◽  
Anne Girod ◽  
...  

2019 ◽  
Author(s):  
Leila Haery ◽  
Benjamin E. Deverman ◽  
Katherine Matho ◽  
Ali Cetin ◽  
Kenton Woodard ◽  
...  

AbstractCell-type-specific expression of molecular tools and sensors is critical to construct circuit diagrams and to investigate the activity and function of neurons within the nervous system. Strategies for targeted manipulation include combinations of classical genetic tools such as Cre/loxP and Flp/FRT, use of cis-regulatory elements, targeted knock-in transgenic mice, and gene delivery by AAV and other viral vectors. The combination of these complex technologies with the goal of precise neuronal targeting is a challenge in the lab. This report will discuss the theoretical and practical aspects of combining current technologies and establish best practices for achieving targeted manipulation of specific cell types. Novel applications and tools, as well as areas for development, will be envisioned and discussed.


Sign in / Sign up

Export Citation Format

Share Document