recombinational repair
Recently Published Documents


TOTAL DOCUMENTS

230
(FIVE YEARS 14)

H-INDEX

49
(FIVE YEARS 1)

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1938
Author(s):  
Vanessa Khemici ◽  
Marc Prudhomme ◽  
Patrice Polard

Cells respond to genome damage by inducing restorative programs, typified by the SOS response of Escherichia coli. Streptococcus pneumoniae (the pneumococcus), with no equivalent to the SOS system, induces the genetic program of competence in response to many types of stress, including genotoxic drugs. The pneumococcal competence regulon is controlled by the origin-proximal, auto-inducible comCDE operon. It was previously proposed that replication stress induces competence through continued initiation of replication in cells with arrested forks, thereby increasing the relative comCDE gene dosage and expression and accelerating the onset of competence. We have further investigated competence induction by genome stress. We find that absence of RecA recombinase stimulates competence induction, in contrast to SOS response, and that double-strand break repair (RexB) and gap repair (RecO, RecR) initiation effectors confer a similar effect, implying that recombinational repair removes competence induction signals. Failure of replication forks provoked by titrating PolC polymerase with the base analogue HPUra, over-supplying DnaA initiator, or under-supplying DnaE polymerase or DnaC helicase stimulated competence induction. This induction was not correlated with concurrent changes in origin-proximal gene dosage. Our results point to arrested and unrepaired replication forks, rather than increased comCDE dosage, as a basic trigger of pneumococcal competence.


2021 ◽  
pp. canres.2723.2020
Author(s):  
Tzeh K. Foo ◽  
Gabrele Vincelli ◽  
Eric Huselid ◽  
Joonyoung Her ◽  
Haiyan Zheng ◽  
...  

2021 ◽  
Author(s):  
Michael Fasullo ◽  
Nicholas Perpetua ◽  
Akaash Kannan ◽  
MIchael Dolan

CYP1B1 activates many chemical carcinogens into potent genotoxins, and allelic variants are risk factors in lung, breast, and prostate cancer. However, genetic instability phenotypes incurred by CYP1B1-activated metabolites have been investigated for only few compounds. In this study, we expressed human CYP1B1 in yeast strains that measure DNA damage-associated toxicity and frequencies of chromosomal translocations and mutations. DNA damage-associated toxicity was measured in a rad4 rad51 strain, defective in both DNA excision and recombinational repair. Frequencies of chromosomal translocations were measured in diploid yeast strains containing two his3 fragments, and mutation frequencies were measured by selecting for canavanine resistance (CanR) in haploid strains. These strains were exposed to benzo[a]pyrene dihydrodiol (BaP-DHD), aflatoxin B1 (AFB1), and the heterocyclic aromatic amines, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-3-methylimidazo(4,5-f)quinoline (IQ). We observed that AFB1, BaP-DHD, IQ, and MeIQx conferred toxicity in the DNA repair mutant expressing CYP1B1. Translocation frequencies increased eight-fold and three-fold after exposure to 50 μM AFB1 and 33 μM BaP-DHD respectively. Only a two-fold increase in mutation frequency was observed after exposure to 50 μM AFB1. However, a robust DNA damage response was observed after AFB1 exposure, as measured by the induction of the small subunit of ribonucleotide reductase, Rnr3. While CYP1B1-mediated activation of BaP-DHD and heterocyclic aromatic amines was expected, strong activation of AFB1 was not. These studies demonstrate that CYP1B1-mediated activation of carcinogens does not only activate compounds to become mutagens but also can convert compounds to become potent recombinagens.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Pedro Ortega ◽  
Jose Antonio Mérida-Cerro ◽  
Ana G Rondón ◽  
Belén Gómez-González ◽  
Andrés Aguilera

DNA double strand breaks (DSBs) are the most harmful DNA lesions and their repair is crucial for cell viability and genome integrity. The readout of DSB repair may depend on whether DSBs occur at transcribed versus non-transcribed regions. Some studies have postulated that DNA-RNA hybrids form at DSBs to promote recombinational repair, but others have challenged this notion. To directly assess whether hybrids formed at DSBs promote or interfere with recombinational repair we have used plasmid and chromosomal-based systems for the analysis of DSB-induced recombination in Saccharomyces cerevisiae. We show that, as expected, DNA-RNA hybrid formation is stimulated at DSBs. In addition, mutations that promote DNA-RNA hybrid accumulation, such as hpr1∆ and rnh1∆ rnh201∆, cause high levels of plasmid loss when DNA breaks are induced at sites that are transcribed. Importantly, we show that high levels or unresolved DNA-RNA hybrids at the breaks interfere with their repair by homologous recombination. This interference is observed for both plasmid and chromosomal recombination and is independent of whether the DSB is generated by endonucleolytic cleavage or by DNA replication. These data support a model in which DNA-RNA hybrids form fortuitously at DNA breaks during transcription, and need to be removed to allow recombinational repair, rather than playing a positive role.


2021 ◽  
Author(s):  
Takeshi Yasuda ◽  
Kazuya Takizawa ◽  
Ayako Ui ◽  
Michio Hama ◽  
Wataru Kagawa ◽  
...  

2021 ◽  
Vol 118 (8) ◽  
pp. e2020185118
Author(s):  
Nalini Dhingra ◽  
Sahiti Kuppa ◽  
Lei Wei ◽  
Nilisha Pokhrel ◽  
Silva Baburyan ◽  
...  

The DNA damage checkpoint induces many cellular changes to cope with genotoxic stress. However, persistent checkpoint signaling can be detrimental to growth partly due to blockage of cell cycle resumption. Checkpoint dampening is essential to counter such harmful effects, but its mechanisms remain to be understood. Here, we show that the DNA helicase Srs2 removes a key checkpoint sensor complex, RPA, from chromatin to down-regulate checkpoint signaling in budding yeast. The Srs2 and RPA antagonism is supported by their numerous suppressive genetic interactions. Importantly, moderate reduction of RPA binding to single-strand DNA (ssDNA) rescues hypercheckpoint signaling caused by the loss of Srs2 or its helicase activity. This rescue correlates with a reduction in the accumulated RPA and the associated checkpoint kinase on chromatin insrs2mutants. Moreover, our data suggest that Srs2 regulation of RPA is separable from its roles in recombinational repair and critically contributes to genotoxin resistance. We conclude that dampening checkpoint by Srs2-mediated RPA recycling from chromatin aids cellular survival of genotoxic stress and has potential implications in other types of DNA transactions.


2020 ◽  
Vol 10 (10) ◽  
pp. 3821-3829
Author(s):  
Dionna Gamble ◽  
Samantha Shaltz ◽  
Sue Jinks-Robertson

Mitotic recombination is the predominant mechanism for repairing double-strand breaks in Saccharomyces cerevisiae. Current recombination models are largely based on studies utilizing the enzyme I-SceI or HO to create a site-specific break, each of which generates broken ends with 3′ overhangs. In this study sequence-diverged ectopic substrates were used to assess whether the frequent Pol δ-mediated removal of a mismatch 8 nucleotides from a 3′ end affects recombination outcomes and whether the presence of a 3′ vs. 5′ overhang at the break site alters outcomes. Recombination outcomes monitored were the distributions of recombination products into crossovers vs. noncrossovers, and the position/length of transferred sequence (heteroduplex DNA) in noncrossover products. A terminal mismatch that was 22 nucleotides from the 3′ end was rarely removed and the greater distance from the end did not affect recombination outcomes. To determine whether the recombinational repair of breaks with 3′ vs. 5′ overhangs differs, we compared the well-studied 3′ overhang created by I-SceI to a 5′ overhang created by a ZFN (Zinc Finger Nuclease). Initiation with the ZFN yielded more recombinants, consistent with more efficient cleavage and potentially faster repair rate relative to I-SceI. While there were proportionally more COs among ZFN- than I-SceI-initiated events, NCOs in the two systems were indistinguishable in terms of the extent of strand transfer. These data demonstrate that the method of DSB induction and the resulting differences in end polarity have little effect on mitotic recombination outcomes despite potential differences in repair rate.


2020 ◽  
Author(s):  
Dionna Gamble ◽  
Samantha Shaltz ◽  
Sue Jinks-Robertson

ABSTRACTMitotic recombination is the predominant mechanism for repairing double-strand breaks in Saccharomyces cerevisiae. Current recombination models are largely based on studies utilizing the enzyme I-SceI or HO to create a site-specific break, each of which generates broken ends with 3’ overhangs. In this study sequence-diverged ectopic substrates were used to assess whether the frequent Pol δ-mediated removal of a mismatch 8 nucleotides from a 3’ end affects recombination outcomes and whether the presence of a 3’ versus 5’ overhang at the break site alters outcomes. Recombination outcomes monitored were the distributions of recombination products into crossovers versus noncrossovers, and the position/length of transferred sequence (heteroduplex DNA) in noncrossover products. A terminal mismatch that was 22 nucleotides from the 3’ end was rarely removed and the greater distance from the end did not affect recombination outcomes. To determine whether the recombinational repair of breaks with 3’ versus 5’ overhangs differs, we compared the well-studied 3’ overhang created by I-SceI to a 5’ overhang created by a ZFN (Zinc Finger Nuclease). Initiation with the ZFN yielded more recombinants, consistent with more efficient cleavage and potentially faster repair rate relative to I-SceI. While there were proportionally more COs among ZFN-than I-SceI-initiated events, NCOs in the two systems were indistinguishable in terms of the extent of strand transfer. These data demonstrate that the method of DSB induction and the resulting differences in end polarity have little effect on mitotic recombination outcomes despite potential differences in repair rate.


Sign in / Sign up

Export Citation Format

Share Document