scholarly journals Synthesis of plasmalemmal glycoproteins in intestinal epithelial cells. Separation of Golgi membranes from villus and crypt cell surface membranes; glycosyltransferase activity of surface membrane

1978 ◽  
Vol 77 (3) ◽  
pp. 722-734 ◽  
Author(s):  
MM Weiser ◽  
MM Neumeier ◽  
A Quaroni ◽  
K Kirsch

The relationship between Golgi and cell surface membranes of intestinal cells was studied. These membranes were isolated from intestinal crypt cells and villus cells. The villus cell membranes consisted of microvillus membrane, a Golgi-rich fraction, and two membrane fractions interpreted as representing lateral-basal membranes. The villus cell microvillus membrane was purified by previously published techniques while the other membranes were obtained from isolated cells by differential centrifugation and density gradient velocity sedimentation. The two membrane fractions obtained from villus cells and considered to be lateral-basal membranes were enriched for Na+,K+-ATPase activity, but one also showed enrichment in glycosyltransferase activity. The Golgi membrane fraction was enriched for glycosyltransferase activity and had low to absent Na+,K+-ATPase activity. Adenylate cyclase activity was present in all membrane fractions except the microvillus membrane but co-purified with Golgi rather than lateral-basal membranes. Electron microscopy showed that the Golgi fraction consisted of variably sized vesicles and cisternalike structures. The two lateral-basal membrane fractions showed only vesicles of smaller, more uniform size. After 125I labeling of isolated intact cells, radioactivity was found associated with the lateral-basal and microvillus membrane fractions and not with the Golgi fraction. Antibody prepared against lateral-basal membrane fractions reacted with the surface membrane of isolated villus cells. The membrane fractions from isolated crypt cells demonstrated that all had high glycosyltransferase activity. The data show that glycosyltransferase activity, in addition to its Golgi location, may be a significant property of the lateral-basal portion of the intestinal villus cell plasma membrane. Data obtained with crypt cells support earlier data and show that the crypt cell surface membrane possesses glycosyltransferase activity.

Author(s):  
Anthony Demsey ◽  
Christopher W. Stackpole

The murine leukemia viruses are type-C oncornaviruses, and their release from the host cell involves a “budding” process in which the newly-forming, RNA-containing virus core becomes enveloped by modified cell surface membrane. Previous studies revealed that the released virions possess a dense array of 10 nm globular projections (“knobs”) on this envelope surface, and that these knobs contain a 70, 000 MW glycoprotein (gp70) of viral origin. Taking advantage of this distinctive structural formation, we have developed a procedure for freeze-drying and replication of intact cells which reveals surface detail superior to other surface replica techniques, and sufficient to detect even early stages of virus budding by localized aggregation of these knobs on the cell surface.Briefly, cells growing in monolayer are seeded onto round glass coverslips 10-12 mm in diameter. After a period of growth, cells are fixed in situ for one hour, usually with 1% OsO4 in 0. 1 M cacodylate buffer, and rinsed in distilled water.


1980 ◽  
Vol 192 (1) ◽  
pp. 133-144 ◽  
Author(s):  
A Quaroni ◽  
K Kirsch ◽  
A Herscovics ◽  
K J Isselbacher

The biosynthesis of membrane proteins and glycoproteins has been studied in rat intestinal crypt and villus cells by measuring the incorporation of L-[5,6-3H] fucose, D-[2-3H] mannose and L-[3,4,5-3H] leucine, given intraperitoneally, into Golgi, lateral-basal and luminal membranes. Incorporation of leucine and mannose was approximately equal in crypt and villus cells, whereas fucose incorporation was markedly higher (3-4 times) in the differentiated villus cells. As previously reported [Quaroni, Kirsch & Weiser (1979) Biochem J. 182. 203-212] most of the fucosylated glyco-proteins synthesized in the villus cells and initially present in the Golgi and lateral-basal membranes were found re-distributed, within 3-4h of label administration, in the luminal membrane. A similar process appeared to occur in the crypt cells, where, however, only few fucose-labelled glycoproteins were identified. In contrast, most of the leucine-labelled and many mannose-labelled membrane components found in the lateral-basal membrane of both crypt and villus cells did not seen to undergo a similar re-distribution process. The fucosylated glycoproteins of the intestinal epithelial cells represent, therefore, a special class of membrane components, most of which appear with differentiation, that are selectively localized in the luminal portion of the plasmalemma. In contrast with the marked differences in protein and glycoprotein patterns between the luminal membrane of villus and crypt cells, only minor differences were found between their lateral-basal membrane components: their protein patterns on sodium dodecyl sulphate/polyacrylamide slab gels, and the patterns of fucose-, mannose- and leucine-labelled components (analysed 3-4h after label administration) were very similar. Although the minor differences detected may be of importance, it appears that most of the surface-membrane changes accompanying cell differentiation in the intestinal epithelial cells are localized in the luminal portion of their surface membrane.


1985 ◽  
Vol 100 (5) ◽  
pp. 1601-1610 ◽  
Author(s):  
A Quaroni

Three monoclonal antibodies were prepared against luminal membranes from small intestinal cells of 3-d-old rats (YBB 1/27, YBB 3/10) and crypt cell membranes from adult rats (CC 4/80). The antibodies were shown to define specific stages of development of the intestinal crypt cells. The YBB 1/27 antigen was first detected at the luminal membrane of the epithelial cells in fetal intestine at day 20 of gestation; it was confined to the crypt cells and lower villus cells between 1 and 20-22 d after birth, and could not be detected in any region of the intestine in older animals. The YBB 3/10 antigen, identified as a set of high Mr proteins, was localized over the entire surface membrane of fetal intestinal cells and of crypt and villus cells after birth; after weaning (20-22 d after birth) it gradually disappeared from the villus cells and became confined to the region of the crypts. The CC 4/80 antigen, identified as a protein (or a set of related proteins) of molecular mass 28-34 kD, was shown to appear in the crypt cells 10-14 d after birth. Its distribution changed after weaning, when it disappeared from the crypts, and was localized in the absorptive lower villus cells. This change in pattern could, in part, be prematurely elicited by cortisone injection in younger animals. These results have demonstrated the presence of specific surface membrane components on the intestinal crypt cells, and suggested that fetal antigens may be retained in these cells after birth.


1989 ◽  
Vol 109 (1) ◽  
pp. 389-395 ◽  
Author(s):  
T A Drake ◽  
W Ruf ◽  
J H Morrissey ◽  
T S Edgington

Tissue factor (TF) is an integral membrane glycoprotein which, as the receptor and essential cofactor for coagulation factors VII and VIIa (FVII and FVIIa, respectively), is the primary cellular activator of the coagulation protease cascade. Previous studies on the procoagulant activity of a variety of cell types (either lysed or in the intact state) have variously been interpreted as showing that TF is either stored intracellularly or is present in a cryptic form in the surface membrane. Using mAbs to TF, we have directly investigated the subcellular localization and functional activity of TF in lipopolysaccharide-stimulated blood monocytes and J82 bladder carcinoma cells. Blocking of surface TF of viable cells with inhibitory anti-TF mAbs abolished greater than 90% of TF activity of the intact cells as well as of lysed cells. Furthermore, quantitative analysis of the binding of FVII and anti-TF mAb to J82 cells demonstrated that all surface-expressed TF molecules were capable of binding the ligand, FVII. By immunoelectron microscopy, TF was present only in the surface membrane of monocytes and J82 cells, although the latter also contained apparently inactive TF antigen in multivesicular bodies. On the intact cell surface the catalytic activity of the TF-FVIIa complex was investigated and found to be markedly less relative to cell lysates. Membrane alterations that affect the cofactor activity of TF may be a means of regulating the extent of initiation of the coagulation protease cascade in various cellular settings.


Author(s):  
D. James Morré ◽  
Charles E. Bracker ◽  
William J. VanDerWoude

Calcium ions in the concentration range 5-100 mM inhibit auxin-induced cell elongation and wall extensibility of plant stems. Inhibition of wall extensibility requires that the tissue be living; growth inhibition cannot be explained on the basis of cross-linking of carboxyl groups of cell wall uronides by calcium ions. In this study, ultrastructural evidence was sought for an interaction of calcium ions with some component other than the wall at the cell surface of soybean (Glycine max (L.) Merr.) hypocotyls.


Author(s):  
Michael Edidin

Cell surface membranes are based on a fluid lipid bilayer and models of the membranes' organization have emphasised the possibilities for lateral motion of membrane lipids and proteins within the bilayer. Two recent trends in cell and membrane biology make us consider ways in which membrane organization works against its inherent fluidity, localizing both lipids and proteins into discrete domains. There is evidence for such domains, even in cells without obvious morphological polarity and organization [Table 1]. Cells that are morphologically polarised, for example epithelial cells, raise the issue of membrane domains in an accute form.The technique of fluorescence photobleaching and recovery, FPR, was developed to measure lateral diffusion of membrane components. It has also proven to be a powerful tool for the analysis of constraints to lateral mobility. FPR resolves several sorts of membrane domains, all on the micrometer scale, in several different cell types.


Author(s):  
Robert D. Nelson ◽  
Sharon R. Hasslen ◽  
Stanley L. Erlandsen

Receptors are commonly defined in terms of number per cell, affinity for ligand, chemical structure, mode of attachment to the cell surface, and mechanism of signal transduction. We propose to show that knowledge of spatial distribution of receptors on the cell surface can provide additional clues to their function and components of functional control.L-selectin and Mac-1 denote two receptor populations on the neutrophil surface that mediate neutrophil-endothelial cell adherence interactions and provide for targeting of neutrophil recruitment to sites of inflammation. We have studied the spatial distributions of these receptors using LVSEM and backscatter imaging of isolated human neutrophils stained with mouse anti-receptor (primary) antibody and goat anti-mouse (secondary) antibody conjugated to 12 nm colloidal gold. This combination of techniques provides for three-dimensional analysis of the expression of these receptors on different surface membrane domains of the neutrophil: the ruffles and microvilli that project from the cell surface, and the cell body between these projecting structures.


1994 ◽  
Vol 72 (06) ◽  
pp. 848-855 ◽  
Author(s):  
Dzung The Le ◽  
Samuel I Rapaport ◽  
L Vijaya Mohan Rao

SummaryFibroblast monolayers constitutively expressing surface membrane tissue factor (TF) were treated with 0.1 mM N-ethylmaleimide (NEM) for 1 min to inhibit aminophospholipid translocase activity without inducing general cell damage. This resulted in increased anionic phospholipid in the outer leaflet of the cell surface membrane as measured by the binding of 125I-annexin V and by the ability of the monolayers to support the generation of prothrombinase. Specific binding of 125I-rVIIa to TF on NEM-treated monolayers was increased 3- to 4-fold over control monolayers after only brief exposure to 125I-rVIIa, but this difference progressively diminished with longer exposure times. A brief exposure of NEM-treated monolayers to rVIIa led to a maximum 3- to 4-fold enhancement of VIIa/TF catalytic activity towards factor X over control monolayers, but, in contrast to the binding studies, this 3- to 4-fold difference persisted despite increasing time of exposure to rVIIa. Adding prothrombin fragment 1 failed to diminish the enhanced VIIa/TF activation of factor X of NEM-treated monolayers. Moreover, adding annexin V, which was shown to abolish the ability of NEM to enhance factor X binding to the fibroblast monolayers, also failed to diminish the enhanced VIIa/TF activation of factor X. These data provide new evidence for a possible mechanism by which availability of anionic phospholipid in the outer layer of the cell membrane limits formation of functional VIIa/TF complexes on cell surfaces.


Sign in / Sign up

Export Citation Format

Share Document