Expression, purification, stability optimization and characterization of human Aurora B kinase domain from E. coli

2010 ◽  
Vol 503 (2) ◽  
pp. 191-201 ◽  
Author(s):  
Payal R. Sheth ◽  
Lata Ramanathan ◽  
Ashwin Ranchod ◽  
Andrea D. Basso ◽  
Dianah Barrett ◽  
...  
2013 ◽  
Vol 12 (4) ◽  
pp. 460-470 ◽  
Author(s):  
Pamela Farrell ◽  
Lihong Shi ◽  
Jennifer Matuszkiewicz ◽  
Deepika Balakrishna ◽  
Takashi Hoshino ◽  
...  

2011 ◽  
Vol 101 (6) ◽  
pp. 710-717 ◽  
Author(s):  
Dongping Wang ◽  
Schuyler S. Korban ◽  
P. Lawrence Pusey ◽  
Youfu Zhao

RcsC is a hybrid sensor kinase which contains a sensor domain, a histidine kinase domain, and a receiver domain. We have previously demonstrated that, although the Erwinia amylovora rcsC mutant produces more amylovoran than the wild-type (WT) strain in vitro, the mutant remains nonpathogenic on both immature pear fruit and apple plants. In this study, we have comparatively characterized the Erwinia RcsC and its homologs from various enterobacteria. Results demonstrate that expression of the Erwinia rcsC gene suppresses amylovoran production in various amylovoran overproducing WT and mutant strains, thus suggesting the presence of a net phosphatase activity of Erwinia RcsC. Findings have also demonstrated that rcsC homologs from other enterobacteria could not rescue amylovoran production of the Erwinia rcsC mutant in vitro. However, virulence of the Erwinia rcsC mutant is partially restored by rcsC homologs from Pantoea stewartii, Yersinia pestis, and Salmonella enterica but not from Escherichia coli on apple shoots. Domain-swapping experiments have indicated that replacement of the E. coli RcsC sensor domain by those of Erwinia and Yersinia spp. partially restores virulence of the Erwinia rcsC mutant, whereas chimeric constructs containing the sensor domain of E. coli RcsC could not rescue virulence of the Erwinia rcsC mutant on apple. Interestingly, only chimeric constructs containing the histidine kinase and receiver domains of Erwinia RcsC are fully capable of rescuing amylovoran production. These results suggest that the sensor domain of RcsC may be important in regulating bacterial virulence, whereas the activity of the histidine kinase and receiver domains of Erwinia RcsC may be essential for amylovoran production in vitro.


2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


2018 ◽  
Vol 34 (3) ◽  
pp. 267-278
Author(s):  
Ashraf A. Abd El-Tawab ◽  
Mohamed G. Aggour ◽  
Fatma I. El- Hofy ◽  
Marwa M. Y. El- Mesalami

Microbiology ◽  
2006 ◽  
Vol 152 (7) ◽  
pp. 2129-2135 ◽  
Author(s):  
Taku Oshima ◽  
Francis Biville

Functional characterization of unknown genes is currently a major task in biology. The search for gene function involves a combination of various in silico, in vitro and in vivo approaches. Available knowledge from the study of more than 21 LysR-type regulators in Escherichia coli has facilitated the classification of new members of the family. From sequence similarities and its location on the E. coli chromosome, it is suggested that ygiP encodes a lysR regulator controlling the expression of a neighbouring operon; this operon encodes the two subunits of tartrate dehydratase (TtdA, TtdB) and YgiE, an integral inner-membrane protein possibly involved in tartrate uptake. Expression of tartrate dehydratase, which converts tartrate to oxaloacetate, is required for anaerobic growth on glycerol as carbon source in the presence of tartrate. Here, it has been demonstrated that disruption of ygiP, ttdA or ygjE abolishes tartrate-dependent anaerobic growth on glycerol. It has also been shown that tartrate-dependent induction of the ttdA-ttdB-ygjE operon requires a functional YgiP.


Sign in / Sign up

Export Citation Format

Share Document