Alteration of local and systemic amino acids metabolism for the inducible defense in tea plant (Camellia sinensis) in response to leaf herbivory by Ectropis oblique

2020 ◽  
Vol 683 ◽  
pp. 108301
Author(s):  
Longbao Li ◽  
Tingting Li ◽  
Yuanyuan Jiang ◽  
Yunqiu Yang ◽  
Liang Zhang ◽  
...  
PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9787 ◽  
Author(s):  
Lidiia S. Samarina ◽  
Lyudmila S. Malyukova ◽  
Alexander M. Efremov ◽  
Taisiya A. Simonyan ◽  
Alexandra O. Matskiv ◽  
...  

Background Cold and frost are two serious factors limiting the yield of many crops worldwide, including the tea plant (Camellia sinensis (L.) Kuntze). The acclimatization of tea plant from tropical to temperate climate regions resulted in unique germplasm in the North–Western Caucasus with extremely frost-tolerant genotypes. Methods The aim of the current research was to evaluate the physiological, biochemical and genetic responses of tolerant and sensitive tea cultivars exposed to cold (0 to +2 °C for 7 days) and frost (−6 to −8 °C for 5 days). Relative water content, cell membranes integrity, pH of the cell sap, water soluble protein, cations, sugars, amino acids were measured under cold and frost. Comparative expression of the following genes ICE1, CBF1, WRKY2, DHN1, DHN2, DHN3, NAC17, NAC26, NAC30, SnRK1.1, SnRK1.2, SnRK1.3, bHLH7, bHLH43, P5CS, LOX1, LOX6, LOX7 were analyzed. Results We found elevated protein (by 3–4 times) and cations (potassium, calcium and magnesium) contents in the leaves of both cultivars under cold and frost treatments. Meanwhile, Leu, Met, Val, Thr, Ser were increased under cold and frost, however tolerant cv. Gruzinskii7 showed earlier accumulation of these amino acids. Out of 18 studied genes, 11 were expressed at greater level in the frost- tolerant cultivar comparing with frost-sensitive one: ICE1, CBF1, WRKY2, DHN2, NAC17, NAC26, SnRK1.1, SnRK1.3, bHLH43, P5CS and LOX6. Positive correlations between certain amino acids namely, Met, Thr, Leu and Ser and studied genes were found. Taken together, the revealed cold responses in Caucasian tea cultivars help better understanding of tea tolerance to low temperature stress and role of revealed metabolites need to be further evaluated in different tea genotypes.


2018 ◽  
Vol 19 (8) ◽  
pp. 2414 ◽  
Author(s):  
Chen Huang ◽  
Jin Zhang ◽  
Xin Zhang ◽  
Yongchen Yu ◽  
Wenbo Bian ◽  
...  

Polyphenol oxidases (PPOs) have been reported to play an important role in protecting plants from attacks by herbivores. Though PPO genes in other plants have been extensively studied, research on PPO genes in the tea plant (Camellia sinensis) is lacking. In particular, which members of the PPO gene family elicit the defense response of the tea plant are as yet unknown. Here, two new PPO genes, CsPPO1 and CsPPO2, both of which had high identity with PPOs from other plants, were obtained from tea leaves. The full length of CsPPO1 contained an open reading frame (ORF) of 1740 bp that encoded a protein of 579 amino acids, while CsPPO2 contained an ORF of 1788 bp that encoded a protein of 595 amino acids. The deduced CsPPO1 and CsPPO2 proteins had calculated molecular masses of 64.6 and 65.9 kDa; the isoelectric points were 6.94 and 6.48, respectively. The expression products of recombinant CsPPO1 and CsPPO2 in Escherichia coli were about 91 and 92 kDa, respectively, but the recombinant proteins existed in the form of an inclusion body. Whereas CsPPO1 is highly expressed in stems, CsPPO2 is highly expressed in roots. Further results showed that the expression of CsPPO1 and CsPPO2 was wound- and Ectropis obliqua-induced, and that regurgitant, unlike treatment with wounding plus deionized water, significantly upregulated the transcriptional expression of CsPPO2 but not of CsPPO1. The difference between regurgitant and wounding indicates that CsPPO2 may play a more meaningful defensive role against E. obliqua than CsPPO1. Meanwhile, we found the active component(s) of the regurgitant elicited by the expression of CsPPO may contain small molecules (under 3-kDa molecular weight). These conclusions advance the understanding of the biological function of two new PPO genes and show that one of these, CsPPO2, may be a promising gene for engineering tea plants that are resistant to E. obliqua.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Yan Wei ◽  
Wang Jing ◽  
Zhou Youxiang ◽  
Zhao Mingming ◽  
Gong Yan ◽  
...  

Tea (Camellia sinensis) is a popular beverage all over the world and a number of studies have focused on the genetic uniqueness of tea and its cultivars. However, molecular mechanisms underlying these phenomena are largely undefined. In this report, based on expression data available from public databases, we performed a series of analyses to identify genes probably relevant to the uniqueness ofC. sinensisand two of its cultivars (LJ43 and ZH2). Evolutionary analyses showed that the evolutionary rates of genes involved in the pathways were not significantly different amongC. sinensis,C. oleifera, andC. azalea. Interestingly, a number of gene families, including genes involved in the pathways synthesizing iconic secondary metabolites of tea plant, were significantly upregulated, expressed inC. sinensis(LJ43) when compared toC. azalea, and this may partially explain its higher content of flavonoid, theanine, and caffeine. Further investigation showed that nonsynonymous mutations may partially contribute to the differences between the two cultivars ofC. sinensis, such as the chlorina and higher contents of amino acids in ZH2. Genes identified as candidates are probably relevant to the uniqueness ofC. sinensisand its cultivars should be good candidates for subsequent functional analyses and marker-assisted breeding.


Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1218
Author(s):  
Xinwan Zhang ◽  
Hongling Liu ◽  
Elizabeth Pilon-Smits ◽  
Wei Huang ◽  
Pu Wang ◽  
...  

The vigor of tea plants (Camellia sinensis) and tea quality are strongly influenced by the abundance and forms of nitrogen, principally NO3−, NH4+, and amino acids. Mechanisms to access different nitrogen sources and the regulatory cues remain largely elusive in tea plants. A transcriptome analysis was performed to categorize differentially expressed genes (DEGs) in roots and young leaves during the early response to four nitrogen treatments. Relative to the continuously nitrogen-replete control, the three nitrogen-deprived and resupplied treatments shared 237 DEGs in the shoots and 21 DEGs in the root. Gene-ontology characterization revealed that transcripts encoding genes predicted to participate in nitrogen uptake, assimilation, and translocation were among the most differentially expressed after exposure to the different nitrogen regimes. Because of its high transcript level regardless of nitrogen condition, a putative amino acid transporter, TEA020444/CsCAT9.1, was further characterized in Arabidopsis and found to mediate the acquisition of a broad spectrum of amino acids, suggesting a role in amino acid uptake, transport, and deposition in sinks as an internal reservoir. Our results enhance our understanding of nitrogen-regulated transcript level patterns in tea plants and pinpoint candidate genes that function in nitrogen transport and metabolism, allowing tea plants to adjust to variable nitrogen environments.


2018 ◽  
Vol 44 (3) ◽  
pp. 463 ◽  
Author(s):  
Zhang PENG ◽  
Hua-Rong TONG ◽  
Guo-Lu LIANG ◽  
Yi-Qi SHI ◽  
Lian-Yu YUAN

2016 ◽  
Vol 42 (1) ◽  
pp. 58 ◽  
Author(s):  
Bo WANG ◽  
Hong-Li CAO ◽  
Yu-Ting HUANG ◽  
Yu-Rong HU ◽  
Wen-Jun QIAN ◽  
...  

2021 ◽  
Vol 285 ◽  
pp. 110164
Author(s):  
Ya-Zhuo Yang ◽  
Tong Li ◽  
Rui-Min Teng ◽  
Miao-Hua Han ◽  
Jing Zhuang

Sign in / Sign up

Export Citation Format

Share Document