A chemical equilibrium modelling strategy for tuning the apparent equilibrium constants of the chemical systems

2019 ◽  
Vol 1049 ◽  
pp. 29-37 ◽  
Author(s):  
Somaiyeh Khodadadi Karimvand ◽  
Marcel Maeder ◽  
Hamid Abdollahi
1995 ◽  
Vol 198 (8) ◽  
pp. 1775-1782 ◽  
Author(s):  
E M Golding ◽  
W E Teague ◽  
G P Dobson

Physiologists and biochemists frequently ignore the importance of adjusting equilibrium constants to the ionic conditions of the cell prior to calculating a number of bioenergetic and kinetic parameters. The present study examines the effect of pH and free magnesium levels (free [Mg2+]) on the apparent equilibrium constants (K') of creatine kinase (ATP: creatine N-phosphotransferase; EC 2.7.3.2), adenylate kinase (ATP:AMP phosphotransferase; EC 2.7.4.3) and adenosinetriphosphatase (ATP phosphohydrolase; EC 3.6.1.3) reactions. We show how K' can be calculated using the equilibrium constant of a specified chemical reaction (Kref) and the appropriate acid-dissociation and Mg(2+)-binding constants at an ionic strength (I) of 0.25 mol l-1 and 38 degrees C. Substituting the experimentally determined intracellular pH and free [Mg2+] into the equation containing a known Kref and two variables, pH and free [Mg2+], enables K' to be calculated at the experimental ionic conditions. Knowledge of K' permits calculation of cytosolic phosphorylation ratio ([ATP]/[ADP][Pi]), cytosolic free [ADP], free [AMP], standard transformed Gibbs energy of formation (delta fG' degrees ATP) and the transformed Gibbs energy of the system (delta fG' ATP) for the biological system. Such information is vital for the quantification of organ and tissue bioenergetics under physiological and pathophysiological conditions.


Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1748 ◽  
Author(s):  
Gregory S. Yablonsky ◽  
Denis Constales ◽  
Guy B. Marin

For a complex catalytic reaction with a single-route linear mechanism, a new, kinetico-thermodynamic form of the steady-state reaction rate is obtained, and we show how its symmetries in terms of the kinetic and thermodynamic parameters allow better discerning their influence on the result. Its reciprocal is equal to the sum of n terms (n is the number of complex reaction steps), each of which is the product of a kinetic factor multiplied by a thermodynamic factor. The kinetic factor is the reciprocal apparent kinetic coefficient of the i-th step. The thermodynamic factor is a function of the apparent equilibrium constants of the i-th equilibrium subsystem, which includes the (n−1) other steps. This kinetico-thermodynamic form separates the kinetic and thermodynamic factors. The result is extended to the case of a buffer substance. It is promising for distinguishing the influence of kinetic and thermodynamic factors in the complex reaction rate. The developed theory is illustrated by examples taken from heterogeneous catalysis.


2014 ◽  
Vol 1665 ◽  
pp. 111-116 ◽  
Author(s):  
I. Puigdomènech ◽  
E. Colàs ◽  
M. Grivé ◽  
I. Campos ◽  
D. García

ABSTRACTA set of computer programs has been developed to draw chemical-equilibrium diagrams. This new software is the Java-language equivalent to the Medusa/Hydra software (developed some time ago in Visual basic at the Royal Institute of Technology, Stockholm, Sweden). The main program, now named “Spana” calls Java programs based on the HaltaFall algorithm. The equilibrium constants that are needed for the calculations may be retrieved from a database included in the software package (“Database” program). This new software is intended for undergraduate students as well as researchers and professionals.The “Spana” code can be easily applied to perform radionuclide speciation and solubility calculations of minerals, including solubility calculations relevant for the performance assessment of a nuclear waste repository. In order to handle ionic strength corrections in such calculations several approaches can be applied. The “Spana” code is able to perform calculations based on three models: the Davies equation; an approximation to the model by Helgeson et al. (HKF); and the Specific Ion-Interaction Theory (SIT). Default SIT-coefficients may be used, which widens the applicability of SIT significantly.A comparison is made here among the different ionic strength approaches used by “Spana” (Davies, HKF, SIT) when modelling the chemistry of radionuclides and minerals of interest under the conditions of a geological repository for nuclear waste. For this purpose, amorphous hydrous Thorium(IV) oxide (ThO2(am)), Gypsum (CaSO4·2H2O) and Portlandite (Ca(OH)2) solubility at high ionic strengths have been modelled and compared to experimental data from the literature. Results show a good fitting between the calculated values and the experimental data especially for the SIT approach in a wide range of ionic strengths (0-4 M).


Sign in / Sign up

Export Citation Format

Share Document