A Simple Method To Calculate the Temperature Dependence of the Gibbs Energy and Chemical Equilibrium Constants

2014 ◽  
Vol 91 (3) ◽  
pp. 396-401 ◽  
Author(s):  
Francisco M. Vargas
1999 ◽  
Vol 64 (7) ◽  
pp. 1093-1099 ◽  
Author(s):  
Ivona Malijevská ◽  
Anatol Malijevský

Temperature dependence of GE is discussed for three widely used equations linear and nonlinear in parameters. It is shown that the Wilson equation predicts always positive excess heat capacity regardless of values of its parameters. Several temperature modifications of the Redlich-Kister, Wilson and NRTL equations are discussed with respect to the sign of the excess Gibbs energy, excess enthalpy and excess heat capacity.


2018 ◽  
Vol 98 (22) ◽  
Author(s):  
Xi Zhang ◽  
Blazej Grabowski ◽  
Fritz Körmann ◽  
Andrei V. Ruban ◽  
Yilun Gong ◽  
...  

Author(s):  
I. N. Ganiev ◽  
S. E. Otajonov ◽  
N. F. Ibrohimov ◽  
M. Mahmudov

In the heat «cooling» investigated the temperature dependence of the specific heat capacity and thermodynamic functions doped strontium alloy AK1М2 in the range 298,15—900 K. Mathematical models are obtained that describe the change in these properties of alloys in the temperature range 298.15—900 K, as well as on the concentration of the doping component. It was found that with increasing temperature, specific heat capacity, enthalpy and entropy alloys increase, and the concentration up to 0.5 wt.% of the alloying element decreases. Gibbs energy values have an inverse relationship, i.e., temperature — decreases the content of alloying component — is up to 0.5 wt.% growing.


1987 ◽  
Vol 65 (9) ◽  
pp. 2198-2202 ◽  
Author(s):  
María Asunción Gallardo ◽  
José María Melendo ◽  
José Santiago Urieta ◽  
Celso Gutierrez Losa

Solubility measurements of several non-polar gases (He, Ne, Ar, Kr, Xe, H2, D2, N2, O2, C2H4, C2H6, CF4, SF6, andCO2) in cyclohexanone at 273.15 to 303.15 K and a partial pressure of gas of 101.32 kPa, are reported. Gibbs energy, enthalpy, and entropy of solution at 298.15 K and 101.32 kPa partial pressure of gas were evaluated. Effective hard-sphere diameter temperature dependence has been studied and its effect on the calculated SPT (Scaled Particle Theory) solubilities, and enthalpies and entropies of solution was also examined.


2005 ◽  
Vol 5 (3) ◽  
pp. 693-702 ◽  
Author(s):  
M. von Hobe ◽  
J.-U. Grooß ◽  
R. Müller ◽  
S. Hrechanyy ◽  
U. Winkler ◽  
...  

Abstract. In-situ measurements of ClO and its dimer carried out during the SOLVE II/VINTERSOL-EUPLEX and ENVISAT Validation campaigns in the Arctic winter 2003 suggest that the thermal equilibrium between the dimer formation and dissociation is shifted significantly towards the monomer compared to the current JPL 2002 recommendation. Detailed analysis of observations made in thermal equilibrium allowed to re-evaluate the magnitude and temperature dependence of the equilibrium constant. A fit of the JPL format for equilibrium constants yields KEQ=3.61x10-27exp(8167/T), but to reconcile the observations made at low temperatures with the existing laboratory studies at room temperature, a modified equation, KEQ=5.47x10-25(T/300)-2.29exp(6969/T), is required. This format can be rationalised by a strong temperature dependence of the reaction enthalpy possibly induced by Cl2O2 isomerism effects. At stratospheric temperatures, both equations are practically equivalent. Using the equilibrium constant reported here rather than the JPL 2002 recommendation in atmospheric models does not have a large impact on simulated ozone loss. Solely at large zenith angles after sunrise, a small decrease of the ozone loss rate due to the ClO dimer cycle and an increase due to the ClO-BrO cycle (attributed to the enhanced equilibrium ClO concentrations) is observed, the net effect being a slightly stronger ozone loss rate.


Sign in / Sign up

Export Citation Format

Share Document