SERS and advanced chemometrics – Utilization of Siamese neural network for picomolar identification of beta-lactam antibiotics resistance gene fragment

2021 ◽  
pp. 339373
Author(s):  
Anastasia Skvortsova ◽  
Andrii Trelin ◽  
Pavel Kriz ◽  
Roman Elashnikov ◽  
Barbora Vokata ◽  
...  
Author(s):  
Yujie Liu ◽  
Yibing Ma ◽  
Zhongqiang Ma ◽  
Xiao Han ◽  
Hang Qi ◽  
...  

Bacteria have evolved distinct molecular mechanisms as a defense against oxidative stress. The foremost regulator of oxidative stress response has been found to be OxyR. However, the molecular details of regulation upstream of OxyR remain largely unknown and need further investigation. Here, we characterize a oxidant stress and antibiotic tolerance regulator, OsaR (PA0056), produced by Pseudomonas aeruginosa. Mutation of osaR increased bacterial tolerance to aminoglycoside and beta-lactam antibiotics, as well as to hydrogen peroxide. Expression of the oxyR regulon genes oxyR, katAB, and ahpBCF was increased in the osaR mutant. However, the OsaR protein does not regulate the oxyR regulon genes through direct binding to their promoters. PA0055, osaR, PA0057 and dsbM are in the same gene cluster, and we provide evidence that expression of these genes involved in oxidant tolerance is controlled by binding of OsaR to intergenic region between osaR and PA0057, which contain two divergent promoters. The gene cluster is also regulated by PA0055 via an indirect effect. We further discovered that OsaR formed intramolecular disulfide bonds when exposed to oxidative stress, resulting in a change of its DNA binding affinity. Taken together, our results indicate that OsaR is inactivated by oxidative stress and plays a role in the tolerance of P. aeruginosa to aminoglycoside and beta-lactam antibiotics. IMPORTANCE As opportunistic pathogen, Pseudomonas aeruginosa can cause serious infections which are hard to eradicate because of antibiotic resistance in immunodeficient patients. We found that OsaR is involved in oxidative stress and antibiotics resistance by regulation of downstream genes via redox state change. Research on factors affecting the transcriptional level of oxyR is very limited, but important since it has implications on antibiotic resistance. In this study, it was found that OsaR can indirectly inhibit transcription of oxyR. In addition the gene cluster composed of PA0055, osaR, PA0057 and dsbM was identified, and the associated regulatory mechanisms and functions were elucidated. Our work not only provides a mechanistic understanding of antibiotic tolerance regulation in P. aeruginosa, but also has significant implications for redox regulation in human pathogens in general.


PLoS Biology ◽  
2021 ◽  
Vol 19 (7) ◽  
pp. e3001346
Author(s):  
Victor I. Band ◽  
David S. Weiss

Antibiotic resistance is a growing crisis that threatens many aspects of modern healthcare. Dogma is that resistance often develops due to acquisition of a resistance gene or mutation and that when this occurs, all the cells in the bacterial population are phenotypically resistant. In contrast, heteroresistance (HR) is a form of antibiotic resistance where only a subset of cells within a bacterial population are resistant to a given drug. These resistant cells can rapidly replicate in the presence of the antibiotic and cause treatment failures. If and how HR and resistance are related is unclear. Using carbapenem-resistant Enterobacterales (CRE), we provide evidence that HR to beta-lactams develops over years of antibiotic usage and that it is gradually supplanted by resistance. This suggests the possibility that HR may often develop before resistance and frequently be a stage in its progression, potentially representing a major shift in our understanding of the evolution of antibiotic resistance.


Sign in / Sign up

Export Citation Format

Share Document