scholarly journals On the fracture toughness of ferroelectric ceramics with electric field applied parallel to the crack front

2004 ◽  
Vol 52 (12) ◽  
pp. 3435-3446 ◽  
Author(s):  
Jianxin Wang ◽  
Chad M. Landis
2006 ◽  
Vol 306-308 ◽  
pp. 1199-1204 ◽  
Author(s):  
Zhan Wei Liu ◽  
Dai Ning Fang ◽  
Hui Min Xie

In this paper, fracture behavior of ferroelectric ceramics under combined electromechanical loading was investigated using moiré interferometry. It is found that the influence of electric field on fracture toughness is not very larger in the case that the directions of the poling, electric field and crack extension are perpendicular to each other. When the poling direction is parallel to the crack extension direction and both are perpendicular to the electric field direction, the normal strain measured reduced faster than that calculated by FEM with and without electrical loading as the distance away from the crack tip increases. Fracture toughness decreases obviously as the electric-field intensity increases.


Author(s):  
A. Takumi Ozawa ◽  
B. Hiroaki Kosuge ◽  
C. Yoshiki Mikami ◽  
D. Tomoya Kawabata

Author(s):  
Hongrui Jia ◽  
Zhigang Liang ◽  
Zhen Li ◽  
Fei Li ◽  
Linghang Wang

Ferroelectric ceramic materials with large and temperature-insensitive strain response are highly desired for the practical application of actuator in harsh environment conditions. In this work, a novel xBi(Mg1/2Zr1/2)O3-(0.55-x)PbZrO3-0.45PbTiO3 (xBMZ-PZ-0.45PT) ternary...


2000 ◽  
Vol 45 (6) ◽  
pp. 776-779
Author(s):  
S. A. Sadykov ◽  
V. Z. Borodin ◽  
A. Sh. Agalarov

Author(s):  
Y Su ◽  
G.J Weng

Most key elements of ferroelectric properties are defined through the hysteresis loops. For a ferroelectric ceramic, its loop is contributed collectively by its constituent grains, each having its own hysteresis loop when the ceramic polycrystal is under a cyclic electric field. In this paper, we propose a polycrystal hysteresis model so that the hysteresis loop of a ceramic can be calculated from the loops of its constituent grains. In this model a micromechanics-based thermodynamic approach is developed to determine the hysteresis behaviour of the constituent grains, and a self-consistent scheme is introduced to translate these behaviours to the polycrystal level. This theory differs from the classical phenomenological ones in that it is a micromechanics-based thermodynamic approach and it can provide the evolution of new domain concentration among the constituent grains. It also differs from some recent micromechanics studies in its secant form of self-consistent formulation and in its application of irreversible thermodynamics to derive the kinetic equation of domain growth. To put this two-level micromechanics theory in perspective, it is applied to a ceramic PLZT 8/65/35, to calculate its hysteresis loop between the electric displacement and the electric field ( D versus E ), and the butterfly-shaped longitudinal strain versus the electric field relation ( ϵ versus E ). The calculated results are found to be in good quantitative agreement with the test data. The corresponding evolution of new domain concentration c 1 and the individual hysteresis loops of several selected grains—along with those of the overall polycrystal—are also illustrated.


2017 ◽  
Vol 22 (4) ◽  
pp. 901-919 ◽  
Author(s):  
M. Graba

Abstract This paper provides a comparative analysis of selected parameters of the geometric constraints for cracked plates subjected to tension. The results of three-dimensional numerical calculations were used to assess the distribution of these parameters around the crack front and their changes along the crack front. The study also involved considering the influence of the external load on the averaged values of the parameters of the geometric constraints as well as the relationship between the material constants and the level of the geometric constraints contributing to the actual fracture toughness for certain geometries.


2013 ◽  
Vol 48 (9) ◽  
pp. 3088-3091 ◽  
Author(s):  
Hengchang Nie ◽  
Xianlin Dong ◽  
Xuefeng Chen ◽  
Genshui Wang ◽  
Hongliang He ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document