electric field direction
Recently Published Documents


TOTAL DOCUMENTS

66
(FIVE YEARS 28)

H-INDEX

8
(FIVE YEARS 4)

Author(s):  
Takahiro Tsuzuki ◽  
Shuji Ogata ◽  
Ryo Kobayashi ◽  
Masayuki Uranagase ◽  
Seiya Shimoi ◽  
...  

BaTiO3 is one of the well-known ferroelectric and piezoelectric materials, which has been widely used in various devices. However, the microscopic mechanism of the ferroelectric domain growth is not understood well. We investigated the effects of point defects, mono- and di-vacancies of Ba, Ti, and O, on the domain growth of BaTiO3 using molecular dynamics simulation with the core-shell inter-atomic potential. We found the following: s(1) One kind of monovacancy, VO1, located on the TiO plane perpendicular to the applied electric field direction, acts to hinder the polarization inversion induced by the applied electric field. The monopole electric field produced by VO1 either hinders or assists the local polarization inversion in accordance with the local intensity of the total electric field. (2) The 1st-neighbor divacancies VBa-VO and VTi-VO as compared to the 2nd-neighbor divacancies asymmetrically affect the domain growth with respect to the applied electric field, making the hysteresis behavior of applied electric field vs. polarization relation. The domain grows even at a small electric field when the directions of the applied electric field and the divacancy dipole are mutually the same. (3) The domain growth speed towards the applied electric field direction is about 2 orders of magnitude higher than that towards the perpendicular direction.


2021 ◽  
pp. 4687-4693
Author(s):  
Aqeel M. Ali ◽  
Ali H. Al-Mowali

    Utilizing first principles calculations within PW91 exchange-correlation method, we investigated a boron sheet that exhibits related electronic properties. The 2-dimensional boron sheet is flattened and has an atomic structure where the pair cores of every three ordered hexagons within the hexagonal network are loaded up by extra atoms, which saves the triangular lattice symmetry. The boron sheet takes possession of intrinsic metal properties and the electronic bands are comparable to the  bands of the graphene that are close to the Fermi level. The real and imaginary parts of the dielectric function show a metallic or semiconductor behaviour, depending on the electric field direction.


2021 ◽  
Author(s):  
Weihao Yang ◽  
Qing Liu ◽  
Hanbin Wang ◽  
Yiqin Chen ◽  
Run Yang ◽  
...  

Abstract Metamaterials with artificial optical properties have attracted significant research interest. In particular, artificial magnetic resonances in non-unity permeability tensor at optical frequencies in metamaterials have been reported. However, only non-unity diagonal elements of the permeability tensor have been demonstrated to date. A gyromagnetic permeability tensor with non-zero off-diagonal elements has not been observed at the optical frequencies. Here we report the observation of gyromagnetic properties in the near-infrared wavelength range in a magneto-plasmonic metamaterial. The non-zero off-diagonal permeability tensor element causes the transverse magneto-optical Kerr effect (TMOKE) under s-polarized incidence that otherwise vanishes if the permeability tensor is not gyromagnetic. By retrieving the permeability tensor elements from reflection, transmission, and TMOKE spectra, we show that the effective off-diagonal permeability tensor elements reach the 10-3 level at the resonance wavelength (~900 nm) of the split-ring resonators that is at least two orders of magnitude higher than that of magneto-optical materials at the same wavelength. The artificial gyromagnetic permeability is attributed to the change in the local electric field direction modulated by the split-ring resonators. Our study demonstrates the possibility of engineering the permeability and permittivity tensors in metamaterials at arbitrary frequencies, thereby promising a variety of applications of next-generation nonreciprocal photonic devices, magneto-plasmonic sensors, and active metamaterials.


2021 ◽  
Vol 59 (5) ◽  
Author(s):  
Vu Dinh Lam ◽  
Bui Xuan Khuyen ◽  
Bui Son Tung ◽  
Tran Quoc Ve ◽  
Dinh Ngoc Dung ◽  
...  

We proposed a small GHz metamaterial perfect absorber, which can operate in two different functional modes depending on the orientation of unit-cell structure. Firstly, when the unit-cell structure is oriented symmetrically to the external electric-field direction, an absorption mode is achieved with a near perfect absorption peak. Secondly, by rotating the resonator structure on top layer, metamaterial is asymmetric to the external field, leading to the excitation of cross-coupling effect.


2021 ◽  
Author(s):  
DANDAN ZHANG ◽  
XINGKANG SHE ◽  
YIPENG HE ◽  
WESLEY A. CHAPKIN, ◽  
VI T. BREGMAN ◽  
...  

Carbon fiber reinforced polymer (CFRP) composites are lightweight materials with superior strength but are expensive due to the increased cost of carbon fibers (CFs). The addition of carbon nanotubes (CNTs) to polymer nanocomposites are becoming an excellent alternative to CF due to their unique combination of electrical, thermal, and mechanical properties. With the application of an electric field across the CNT/polymer mixture before curing, CNTs will not only be aligned along the electric field direction, but also form networks after reaching to a certain degree of alignment. In this study, an alternating current (AC) electric field was applied continuously to CNT/CF/Epoxy hybrid composites before curing. By cutting off the applied voltage when the monitored electric current increased, the degree of networking of CNTs between two CF tows was controlled. The relative electric field strength around the end of conductive carbon fiber tows in the epoxy matrix was modeled using COMSOL Multiphysics. It increased after applying AC electric field parallel to the CF tows, thereby increasing the alignment degree of CNTs and building a network to bridge the CF tows. The preliminary results indicate that the microhardness and tensile modulus between two CF tows are increased due to the networking of CNTs in this area. The fracture surface of the specimens after tensile tests were characterized to reveal more details of the microstructure.


2021 ◽  
Author(s):  
Aino E. Tervo ◽  
Jaakko O. Nieminen ◽  
Pantelis Lioumis ◽  
Johanna Metsomaa ◽  
Victor H. Souza ◽  
...  

Background: Transcranial magnetic stimulation (TMS) is widely used in brain research and treatment of various brain dysfunctions. However, the optimal way to target stimulation and administer TMS therapies, for example, where and in which electric-field direction the stimuli should be given, is yet to be determined. Objective: To develop an automated closed-loop system for adjusting TMS parameters online based on TMS-evoked brain activity measured with electroencephalography (EEG). Methods: We developed an automated closed-loop TMS–EEG set-up. In this set-up, the stimulus parameters are electronically adjusted with multi-locus TMS. As a proof of concept, we developed an algorithm that automatically optimizes the stimulation parameters based on single-trial EEG responses. We applied the algorithm to determine the electric-field orientation that maximizes the amplitude of the TMS–EEG responses. The validation of the algorithm was performed with six healthy volunteers, repeating the search twenty times for each subject. Results: The validation demonstrated that the closed-loop control worked as desired despite the large variation in the single-trial EEG responses. We were often able to get close to the orientation that maximizes the EEG amplitude with only a few tens of pulses. Conclusion: Optimizing stimulation with EEG feedback in a closed-loop manner is feasible and enables effective coupling to brain activity.


Chemosensors ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 184
Author(s):  
Tomislav Markovic ◽  
Gertjan Maenhout ◽  
Matko Martinic ◽  
Bart Nauwelaers

This work presents the design and evaluation of a planar device for microwave heating of liquids in continuous microfluidics (CMF) made in polydimethylsiloxane (PDMS). It deals with volumes in the µL range, which are of high interest and relevance to biologists and chemists. The planar heater in this work is conceived around a complementary split-ring resonator (CSRR) topology that offers a desired electric field direction to—and interaction with—liquids in a microwell. The designed device on a 0.25 mm thick Rogers RO4350B substrate operates at around 2.5 GHz, while a CMF channel and a 2.45 µL microwell are manufactured in PDMS using the casting process. The evaluation of the performance of the designed heater is conducted using a fluorescent dye, Rhodamine B, dissolved in deionized water. Heating measurements are carried out using 1 W of power and the designed device achieves a temperature of 47 °C on a sample volume of 2.45 µL after 20 s of heating. Based on the achieved results, the CSRR topology has a large potential in microwave heating, in addition to the already demonstrated potential in microwave dielectric sensing, all proving the multifunctionality and reusability of single planar microwave-microfluidic devices.


2021 ◽  
Vol 24 (02) ◽  
pp. 185-191
Author(s):  
Z.F. Tsybrii ◽  
◽  
S.N. Danilov ◽  
J.V. Gumenjuk-Sichevska ◽  
N.N. Mikhailov ◽  
...  

The responses of uncooled (T = 300 K) and cooled to T = 78 K antenna-coupled Hg1–xCdxTe-based narrow-gap thin-film photoconductors having large spin-orbit coupling and irradiated by the terahertz (THz) radiation (linearly or circularly polarized) have been investigated. Powerful THz radiation excitation causes photocurrents, which signs and magnitudes are controlled by orientation of antenna axes, an external constant electric field direction and orientation of the polarized (circular or linear) radiation electric field falling onto photoconductors. The observed effects seem to be caused by the spin currents observed in devices where spintronic effects are revealed. spintronic phenomena, photoconductors, THz radiation, HgCdTe.


2021 ◽  
Author(s):  
Jianjun LI ◽  
Qiu-Xiang Qin ◽  
Guo-Jun Weng ◽  
Jian Zhu ◽  
Jun-Wu Zhao

Abstract In this study, the nanoboxes is converted into Au-Ag alloy nanocages by increasing the hole size. Discrete dipole approximation (DDA) is used to study the extinction spectrum and the refractive index sensing characteristics of Au-Ag alloy nanocages with different geometric parameters. With the increase of Au component, the local surface plasmon resonance (LSPR) peak shows approximately linear redshift and the sensitivity factor shows approximately linear decrease. The refractive index sensitivity can be effectively controlled by the Au-Ag ratio at large hole size because the hole and cavity surfaces distribute more environmental dielectric components. Therefore, increasing the hole size and decreasing the Au-Ag ratio can improve the refractive index sensitivity. To explain the effect of alloy composition on the LSPR characteristics and the refractive index sensitivity, the local electric field distributions with different geometric parameters are plotted. We find that the electric field direction on the hole and cavity surfaces are controlled by the Au-Ag ratio and environmental dielectric constant. Moreover, the field vector on the hole and cavity surfaces are formed by the superposition of the incident field, the electric field generated by the oscillating electrons on the outer surface, and the polarized field in the environmental dielectric constant.


Sign in / Sign up

Export Citation Format

Share Document