Self-similar grain size distribution in two dimensions: Analytical solution

2008 ◽  
Vol 56 (16) ◽  
pp. 4200-4205 ◽  
Author(s):  
C.S. Pande ◽  
K.P. Cooper
1996 ◽  
Vol 22 ◽  
pp. 167-175 ◽  
Author(s):  
Neal R. Iverson ◽  
Thomas S. Hooyer ◽  
Roger Leb. Hooke

In shearing sediment beneath glaciers, networks of grains may transiently support shear and normal stresses that are larger than spatial averages. Consistent with studies of fault-gouge genesis, we hypothesize that crushing of grains in such networks is responsible for surrounding larger grains with smaller grains. At sufficiently large strains, this should minimize stress heterogeneity, favor intergranular sliding and abrasion rather than crushing, and result in a self-similar grain-size distribution.This hypothesis is tested with a ring-shear device that slowly shears a large annular sediment sample to high strains. Shearing and comminution of weak equigranular (2.0–3.3 mm) sediment resulted in a self-similar grain-size distribution with a fractal dimension that increased with shear strain toward a steady value of 2.85. This value is significantly larger than that of gouges produced purely by crushing, 2.6, but it is comparable to values for tilts thought to be deforming beneath modern glaciers, 2.8 to nearly 3.0. At low strains, under a steady mean normal stress of 84 kPa, variations in normal stress measured locally ranged in amplitude from 50 to 300 kPa with wavelengths that were 100 times larger than the initial grain diameter. Crushing of grains, observed through the transparent walls of the device, apparently caused the failure of grain networks. At shearing displacements ranging from 0.7 to 1.0 m, the amplitude of local stress fluctuations decreased abruptly. This change is attributed to fine sediment that distributed stresses more uniformly and caused grain networks to fail primarily by intergranular sliding rather than by crushing of grains. Sliding between grains apparently produced silt by abrasion and resulted in a fractal dimension that was higher than if there had been only crushing.A size distribution with a fractal dimension greater than 2.6 is probably a necessary but not sufficient condition for determining whether a basal till has been highly deformed. Stress heterogeneity in subglacial sediment that is shearing through its full thickness should contribute to the erosion of underlying rock.


2007 ◽  
Vol 558-559 ◽  
pp. 1183-1188 ◽  
Author(s):  
Peter Streitenberger ◽  
Dana Zöllner

Based on topological considerations and results of Monte Carlo Potts model simulations of three-dimensional normal grain growth it is shown that, contrary to Hillert’s assumption, the average self-similar volume change rate is a non-linear function of the relative grain size, which in the range of observed grain sizes can be approximated by a quadratic polynomial. In particular, based on an adequate modification of the effective growth law, a new analytical grain size distribution function is derived, which yields an excellent representation of the simulated grain size distribution.


2008 ◽  
Vol 56 (18) ◽  
pp. 5304-5311
Author(s):  
C.S. Pande ◽  
K.P. Cooper ◽  
G.B. McFadden

1996 ◽  
Vol 22 ◽  
pp. 167-175 ◽  
Author(s):  
Neal R. Iverson ◽  
Thomas S. Hooyer ◽  
Roger Leb. Hooke

In shearing sediment beneath glaciers, networks of grains may transiently support shear and normal stresses that are larger than spatial averages. Consistent with studies of fault-gouge genesis, we hypothesize that crushing of grains in such networks is responsible for surrounding larger grains with smaller grains. At sufficiently large strains, this should minimize stress heterogeneity, favor intergranular sliding and abrasion rather than crushing, and result in a self-similar grain-size distribution.This hypothesis is tested with a ring-shear device that slowly shears a large annular sediment sample to high strains. Shearing and comminution of weak equigranular (2.0–3.3 mm) sediment resulted in a self-similar grain-size distribution with a fractal dimension that increased with shear strain toward a steady value of 2.85. This value is significantly larger than that of gouges produced purely by crushing, 2.6, but it is comparable to values for tilts thought to be deforming beneath modern glaciers, 2.8 to nearly 3.0. At low strains, under a steady mean normal stress of 84 kPa, variations in normal stress measured locally ranged in amplitude from 50 to 300 kPa with wavelengths that were 100 times larger than the initial grain diameter. Crushing of grains, observed through the transparent walls of the device, apparently caused the failure of grain networks. At shearing displacements ranging from 0.7 to 1.0 m, the amplitude of local stress fluctuations decreased abruptly. This change is attributed to fine sediment that distributed stresses more uniformly and caused grain networks to fail primarily by intergranular sliding rather than by crushing of grains. Sliding between grains apparently produced silt by abrasion and resulted in a fractal dimension that was higher than if there had been only crushing.A size distribution with a fractal dimension greater than 2.6 is probably a necessary but not sufficient condition for determining whether a basal till has been highly deformed. Stress heterogeneity in subglacial sediment that is shearing through its full thickness should contribute to the erosion of underlying rock.


Sign in / Sign up

Export Citation Format

Share Document