Measurement of strain and strain relaxation in free-standing Si membranes by convergent beam electron diffraction and finite element method

2011 ◽  
Vol 59 (7) ◽  
pp. 2882-2890 ◽  
Author(s):  
H. Gao ◽  
K. Ikeda ◽  
S. Hata ◽  
H. Nakashima ◽  
D. Wang ◽  
...  
Crystals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 5
Author(s):  
Heiko Groiss

Dislocations play a crucial role in self-organization and strain relaxation mechanisms in SiGe heterostructures. In most cases, they should be avoided, and different strategies exist to exploit their nucleation properties in order to manipulate their position. In either case, detailed knowledge about their exact Burgers vectors and possible dislocation reactions are necessary to optimize the fabrication processes and the properties of SiGe materials. In this review a brief overview of the dislocation mechanisms in the SiGe system is given. The method of choice for dislocation characterization is transmission electron microscopy. In particular, the article provides a detailed introduction into large-angle convergent-beam electron diffraction, and gives an overview of different application examples of this method on SiGe structures and related systems.


2003 ◽  
Vol 9 (5) ◽  
pp. 390-398 ◽  
Author(s):  
Stephan Krämer ◽  
Cynthia A. Volkert ◽  
Joachim Mayer

Energy filtered convergent beam electron diffraction was used to investigate localized strain in aluminum interconnects. By analyzing the position of higher order Laue zone lines, it is possible to measure the three-dimensional lattice strain with high accuracy (∼10−4) and high spatial resolution (10 to 100 nm). In the present article, important details of the strain analysis procedure are outlined. Subsequently, results of measurements of the local variation of thermal strains in narrow, free-standing interconnects are presented. The strain development in single grains during thermal cycling between −170°C and +100°C was measured in situ and local stress variations along the interconnect were investigated. The interconnects show reversible elastic behavior over the whole temperature range, leading to large stresses at low temperatures. The strain state varies locally within single grains, as well as from grain to grain, by as much as 50% in both types of samples. By comparing the experimental findings with elastic finite element modeling, a detailed understanding of the triaxial strain state could be achieved.


Author(s):  
K. Ishizuka

The technique of convergent-beam electron diffraction (CBED) has been established. However there is a distinct discrepancy concerning the CBED pattern symmetries associated with translation symmetries parallel to the incident beam direction: Buxton et al. assumed no detectable effects of translation components, while Goodman predicted no associated symmetries. In this report a procedure used by Gjønnes & Moodie1 to obtain dynamical extinction rules will be extended in order to derive the CBED pattern symmetries as well as the dynamical extinction rules.


Sign in / Sign up

Export Citation Format

Share Document