Achieving superior lithium storage performances of CoMoO4 anode for lithium-ion batteries by Si-doping dual vacancy engineering

2021 ◽  
pp. 117600
Author(s):  
Xuejia Wang ◽  
Ting Su ◽  
Yunan Luo ◽  
Lijun Quan ◽  
Linping Zhong ◽  
...  
RSC Advances ◽  
2015 ◽  
Vol 5 (84) ◽  
pp. 68875-68880 ◽  
Author(s):  
Hyun Young Jung ◽  
Sanghyun Hong ◽  
Ami Yu ◽  
Sung Mi Jung ◽  
Sun Kyoung Jeoung ◽  
...  

Herein, we report the use of vertically aligned carbon nanotubes (VA-CNTs) with controlled structure and morphology as an anode material for lithium-ion batteries.


2017 ◽  
Vol 5 (44) ◽  
pp. 23221-23227 ◽  
Author(s):  
Hao Wang ◽  
Ziliang Chen ◽  
Yang Liu ◽  
Hongbin Xu ◽  
Licheng Cao ◽  
...  

Hybrid nanocomposites constructed from starfish-like ZnxCo1−xS rooted in porous carbon and strongly coupled carbon nanotubes have been rationally designed and they exhibit excellent lithium-storage performance.


RSC Advances ◽  
2016 ◽  
Vol 6 (29) ◽  
pp. 24366-24372 ◽  
Author(s):  
Fengqi Lu ◽  
Qiang Chen ◽  
Yibin Wang ◽  
Yonghao Wu ◽  
Pengcheng Wei ◽  
...  

The free-standing CC@TiOxNy@SnS2 nanocomposites have been synthesized via two steps hydrothermal process and exhibited excellent lithium storage performance.


RSC Advances ◽  
2016 ◽  
Vol 6 (106) ◽  
pp. 104597-104607 ◽  
Author(s):  
Monika Wilamowska-Zawlocka ◽  
Paweł Puczkarski ◽  
Zofia Grabowska ◽  
Jan Kaspar ◽  
Magdalena Graczyk-Zajac ◽  
...  

We report here on the synthesis and characterization of silicon oxycarbide (SiOC) in view of its application as a potential anode material for Li-ion batteries.


Energy ◽  
2013 ◽  
Vol 55 ◽  
pp. 925-932 ◽  
Author(s):  
Zunxian Yang ◽  
Qing Meng ◽  
Zaiping Guo ◽  
Xuebin Yu ◽  
Tailiang Guo ◽  
...  

2015 ◽  
Vol 3 (45) ◽  
pp. 22552-22556 ◽  
Author(s):  
Chuanjian Zhang ◽  
Fenglian Chai ◽  
Lin Fu ◽  
Pu Hu ◽  
Shuping Pang ◽  
...  

A Cu3Ge/Ge@G aerogel was synthesized via a simple pyrolysis route and directly employed as a high performance anode for lithium-ion batteries.


2021 ◽  
pp. 2150031
Author(s):  
Hai Li ◽  
Chunxiang Lu

As anode material for lithium-ion batteries, graphite has the disadvantage of relatively low specific capacity. In this work, a simple yet effective strategy to overcome the disadvantages by using a composite of flake graphite (FG) and small-sized graphene (SG) has been developed. The FG/SG composite prepared by dispersing FG and SG (90:10 w/w) in ethanol and drying delivers much higher specific capacity than that of individual component except for improved rate capability. More surprisingly, FG/SG composite delivers higher reversible capacity than its theoretical value calculated according to the theoretical capacities of graphite and graphene. Therefore, a synergistic effect between FG and SG in lithium storage is clearly discovered. To explain it, we propose a model that abundant nanoscopic cavities were formed due to physical adhesion between FG and SG and could accommodate extra lithium.


Sign in / Sign up

Export Citation Format

Share Document