Flexible additive-free CC@TiOxNy@SnS2 nanocomposites with excellent stability and superior rate capability for lithium-ion batteries

RSC Advances ◽  
2016 ◽  
Vol 6 (29) ◽  
pp. 24366-24372 ◽  
Author(s):  
Fengqi Lu ◽  
Qiang Chen ◽  
Yibin Wang ◽  
Yonghao Wu ◽  
Pengcheng Wei ◽  
...  

The free-standing CC@TiOxNy@SnS2 nanocomposites have been synthesized via two steps hydrothermal process and exhibited excellent lithium storage performance.

2017 ◽  
Vol 5 (8) ◽  
pp. 4075-4083 ◽  
Author(s):  
Qiang Chen ◽  
Fengqi Lu ◽  
Ying Xia ◽  
Hai Wang ◽  
Xiaojun Kuang

Mo-doped SnS2 nanosheets supported on carbon cloth are synthesized. The nanosheets, as additive-free integrated electrodes for LIBs, exhibit a high initial discharge capacity, superior cycling performance and rate capability.


2015 ◽  
Vol 3 (39) ◽  
pp. 19907-19912 ◽  
Author(s):  
Meng Li ◽  
Dan Zhou ◽  
Wei-Li Song ◽  
Xiaogang Li ◽  
Li-Zhen Fan

We demonstrate a facile fabrication in which encapsulation of GeOx nanoparticles into hollow carbon shells is achieved through co-axial electrospinning. The resultant GeOx@C core–shell fiber electrode exhibits excellent lithium storage performance, with stable reversible capacity and excellent rate capability.


2020 ◽  
Vol 13 (03) ◽  
pp. 2050014
Author(s):  
Yang Li ◽  
Feng Duan ◽  
Songli Liu ◽  
Cheng Peng

Hierarchical flower-like Ni3V2O8/Co3V2O8 composites were prepared by a simple one-step hydrothermal process. When employed as an anode for lithium-ion batteries (LIBs), the fabricated Ni3V2O8/Co3V2O8 composites exhibited significantly improved lithium storage performances with superior discharge capacity (1142.7[Formula: see text]mAh[Formula: see text]g[Formula: see text] at 100[Formula: see text]mA[Formula: see text]g[Formula: see text]), excellent cycling stability (933.2[Formula: see text]mAh[Formula: see text]g[Formula: see text] after 600 cycles at current density of 500[Formula: see text]mA[Formula: see text]g[Formula: see text]) and remarkable rate capability (607.6[Formula: see text]mAh[Formula: see text]g[Formula: see text] even at rate of 5000[Formula: see text]mA g[Formula: see text]). The superior electrochemical properties could be attributed to the hierarchical flower-like structure and impressive synergistic interplay between Ni3V2O8 and Co3V2O8, which resulted in improved electronic conductivity and stable mass transfer. This interesting hybridization strategy might open a new avenue to prepare micro/nanostructured composites for high-performance energy storage devices.


RSC Advances ◽  
2017 ◽  
Vol 7 (8) ◽  
pp. 4437-4443 ◽  
Author(s):  
Peisheng Guo ◽  
Chengxin Wang

The electrochemical properties of Fe2SiO4 particles were systematically investigated and our results proved that fayalite presents great specific capacity, superior rate capability and long battery cycle life when tested in the form of a half-cell.


2017 ◽  
Vol 5 (44) ◽  
pp. 23221-23227 ◽  
Author(s):  
Hao Wang ◽  
Ziliang Chen ◽  
Yang Liu ◽  
Hongbin Xu ◽  
Licheng Cao ◽  
...  

Hybrid nanocomposites constructed from starfish-like ZnxCo1−xS rooted in porous carbon and strongly coupled carbon nanotubes have been rationally designed and they exhibit excellent lithium-storage performance.


2021 ◽  
pp. 2150031
Author(s):  
Hai Li ◽  
Chunxiang Lu

As anode material for lithium-ion batteries, graphite has the disadvantage of relatively low specific capacity. In this work, a simple yet effective strategy to overcome the disadvantages by using a composite of flake graphite (FG) and small-sized graphene (SG) has been developed. The FG/SG composite prepared by dispersing FG and SG (90:10 w/w) in ethanol and drying delivers much higher specific capacity than that of individual component except for improved rate capability. More surprisingly, FG/SG composite delivers higher reversible capacity than its theoretical value calculated according to the theoretical capacities of graphite and graphene. Therefore, a synergistic effect between FG and SG in lithium storage is clearly discovered. To explain it, we propose a model that abundant nanoscopic cavities were formed due to physical adhesion between FG and SG and could accommodate extra lithium.


2020 ◽  
Vol 49 (31) ◽  
pp. 10909-10917
Author(s):  
Li Sun ◽  
Yuanxing Zhang ◽  
Yi Gong ◽  
Haochen Si ◽  
Yan Shi ◽  
...  

Red P was first decorated with Sn and then interwoven into a CNT framework, achieving greatly shortened electron transfer paths and enhanced lithium storage performance.


2020 ◽  
Vol 4 (9) ◽  
pp. 4780-4788 ◽  
Author(s):  
Qiang Ma ◽  
Jiakang Qu ◽  
Xiang Chen ◽  
Zhuqing Zhao ◽  
Yan Zhao ◽  
...  

Low-cost feedstocks and rationally designed structures are the keys to determining the lithium-storage performance and practical applications of Si-based anodes for lithium-ion batteries (LIBs).


2015 ◽  
Vol 3 (26) ◽  
pp. 13648-13652 ◽  
Author(s):  
Naiteng Wu ◽  
Hao Wu ◽  
Wei Yuan ◽  
Shengjie Liu ◽  
Jinyu Liao ◽  
...  

One-dimensional LiNi0.8Co0.15Al0.05O2 microrods are synthesized through chemical lithiation of mixed Ni, Co, and Al oxalate microrod. The rod-like morphology together with structural stability endows it with superior rate capability and cycle performance for highly reversible lithium storage.


Sign in / Sign up

Export Citation Format

Share Document